
BASIC Tutorial

Table of Contents Page 1

Introduction Page 2

Variables and Expressions Page 3

Sensors Page 5

Logic Page 5

Delay Page 6

Lights Page 6

GOTO and Loops Page 7

GOSUB Page 8

Communication Page 8

Page 1 of 9

Introduction
In this exercise, you will be programming in a variant of the BASIC programming language designed
for small sensors, known as “motes”. Below is an image of the Mote you will be using. On the top
side of the mote, there are three lights colored red, yellow and green. On the underside of the mote,
there are sensors for detecting light and sound. For this exercise, two motes will be directly connected
to a PC.

Programming for the first time can be very challenging, and while BASIC is designed to make writing
your first programs as easy as possible some concepts might not be immediately clear. You will be able
to make a note of these instances at the end of this exercise.

The programming environment.

The environment you will be using allows you to write and quickly test BASIC programs, with the
result being immediately displayed. The programming environment (shown above) consists of three

Page 2 of 9

fields: “BASIC Code”, “Mote Output” and “Base Station Output”. Programs are entered in the
“BASIC Code” field and are executed by clicking on the “Program” menu and selecting “Run”. Your
program will begin executing immediately, displaying any output or errors in the “Mote Output” field.
Try entering and running the following program:

10 print "Hello, World!"

After clicking run, the text “Hello World!” should appear in the “Mote Output” field. If the text does
not appear, double check that you have entered in the correct program. If you are still having issues,
please ask your proctor for help. If everything the text appears then you have successfully written your
first BASIC program! Throughout this tutorial, you are strongly encouraged to try all of the provided
examples.

In BASIC, each line represents a single operation. An operation might add two numbers, turn on a
light on the mote or send a message. A line in BASIC begins with a number that acts as the line's label.

10 a = 1 + 2
20 print a

This program consists of two lines: 10 and 20. Lines are executed one after another and should always
be entered in increasing order. Entering the above lines in the opposite order (with 10 following 20)
will make the program more difficult to understand and might have unintended consequences.

One of the most important operations for someone starting to program is print. In BASIC, print
simply takes all of the values that follow it, transmits them to the PC via the large, white cable and
displays them in the “Mote Output” window. Printing text requires that the text be contained in quotes,
while numbers and expressions can be printed without quotes. Multiple values can be printed by
separating each value with a comma.

10 print "Two numbers:", 1, 2, "and their sum:", 1 + 2

Variables and Expressions
You might now be asking yourself, what is a variable and an expression? A variable in BASIC is a
location for storing data, in this case a positive whole number in the range of 0 to 65535. There are 26
variables in BASIC, one for each letter of the alphabet. Values are assigned to variables by using the
equal sign. For example, the following line assigns the value one to the variable a and prints out the
value:

10 a = 1
20 print a

All data in BASIC can be manipulated using a number of mathematical operators in what is known as
an expression. BASIC supports familiar operations including adding, subtracting, multiplying and
dividing as well as several others.

Page 3 of 9

Operator Effect Example Result
+ Adds two numbers or variables a = 1 + 2 a = 3
- Subtracts two numbers or variables a = 100 - 90 a = 10

* Multiplies two numbers or variables a = 5 * 3 a = 15
/ Divides two numbers of variables a = 5 / 3 a = 1

% Generates the remainder of dividing two numbers or variables a = 5 % 3 a = 2
& Combines two values with a logical and a = 1 & 0 a = 0
| Combines two values with a logical or a = 1 | 0 a = 1

BASIC Operators.

Many of the operations work as you might expect, however when the numbers exceed the bounds
allowed by the BASIC, the resulting values might seem random. For example, consider this program:

10 a = 500 * 500
20 print a

We would expect to display 250,000, however, because it is beyond BASIC's range, it will print
something very different. The other caveat to math in BASIC has to do with division. Because BASIC
can only understand whole number values, it is impossible to represent exact fractions. This will lead
to some surprises for someone who has never programmed before. For example, try running this
program:

10 a = 5 / 3
20 print a

You may have expected an output of something like one and two-thirds or the approximate decimal
1.6666666, but why just one? Division in BASIC is referred to as integer division which only supplies
the quotient. It is possible to capture the remainder using the modulus operator (the percent sign).

10 a = 13
20 b = 10
30 print a, "divided by", b, "is", a / b, "remainder", a % b

Try writing a few simple programs until you feel comfortable with all of the operators.

Expressions need not be limited to a single operation. In BASIC, you can chain operators and group
then using parenthesis. This line first multiplies five by ten and adds 4:

10 a = 4 + 5 * 10
20 print a

Evaluation proceeds algebraically, with multiplication and division preceding addition and subtraction,
with the above code resulting in 54. This precedence can be changed by grouping operations with a

Page 4 of 9

pair of parenthesis. Changing the program to the following results in an output of 90.

10 a = (4 + 5) * 10
20 print a

Sensors
Beyond expressions, another source of data is through each mote's built in sensors. The mote you will
be using supports reading sound, light, temperature and acceleration values. You can read a sensor
input into a variable using the sense keyword.

10 sense 1 a
20 print a

This code takes a temperature measurement and places the value in the “a” variable and then prints that
value. The number following the sense keyword specifies which sensor is to be used, and you can find
a list of the sensor mappings in following table.

Sensor number Sensor type
0 Light
1 Temperature
2 Sound level
3 X-axis

acceleration
4 Y-axis

acceleration

Logic
An important part of any computer program is the ability to perform different actions based on certain
conditions. For example, a web-based email service will only let you see your inbox if you enter the
correct password, otherwise it might ask you to reenter your password. At the heart of this is a simple
operation comparing two password values that reflects much of the logic used by a programmer to
control his or her program.

In BASIC, this kind of control is handled by the if-then statement and is the first statement we have
encountered that allows us to control the flow of our program. A typical if-then statement looks like
this:

10 a = 9
20 if a > 10 then print "greater than 10"
30 if a < 10 then print "less than 10"

Page 5 of 9

First things first, what do we mean change the flow? In this statement we conditionally execute two
BASIC statements, print "greater than 10" and print "less than 10". The first
decision of what to execute is based on the code a > 10, which is two expressions (a and 10)
combined with a relationship operator (>). The table below shows all of the available relationship
operators.

Symbol Operation on a (operator) b
> True if a is greater than b, false otherwise
< True if a is less than b, false otherwise
= True if a equals b, false otherwise

Because the relationship operators work between expressions, it is possible to make more complex
logical expressions, for example:

10 a = 5
20 if (a % 2) = 0 then print "even"
30 if (a % 2) = 1 then print "odd"

Line 20 and 30 use the modulus operator to check to see if there is any remainder after dividing the
variable a by two. If there is no remainder, then a is decided to be even, otherwise it is 1.

Delay
For many applications in which sensor motes are used it is often necessary to stop program execution
for some fixed amount of time. For example, say you want to take several readings, each one second
apart and report the average. With the sleep statement, you can do exactly this.

10 sense 1 a
20 sleep 1000
30 sense 1 b
40 c = (a + b)/2
50 print "Average temperature is", c

The sleep keyword is followed by an expression indicating how long to sleep for in milliseconds, in
this case 1000. When the mote is asleep, it uses substantially less power because it does not need to
run the processor. Sensor applications can use this fact to reduce power consumption when it is not
necessary to meet an immediate deadline, and many applications can tolerate some delays in reading
data.

Lights
The sensor mote used in this tutorial has three LED lights attached to it, with one colored red, yellow
and green. The lights can be illuminated using the led keyword.

Page 6 of 9

10 led 2 1
20 sleep 5000

This program turns on the red LED for five seconds. The led statement is followed by two expressions
(in this case, two and one). The first expression determines which light is operated on, with a value of
0 representing the yellow light, 1 representing green and 2 representing red. The second expression
determines whether the light is turned on or off. If the expression results in 0, the light is turned off. If
the expression is greater than 0, the light is turned on.

Using expressions to determine whether or not to turn on the lights allows us to control the lights with
more complex logic. When your application is finished, the yellow LED will light up, so any lights
enabled during your program will be lost. If you omit the sleep line above, the light will not appear
to turn on because the application will quickly end.

GOTO and Loops
At this point, you should feel comfortable reading a value from a sensor, displaying that value on the
screen and perhaps blinking the lights based on that value. While this is fundamentally not so different
from how real sensor code operates, it has one serious drawback: we cannot repeat our program or
reuse parts of it. In the programs we have seen so far, each line is executed one right after another and
the program terminates after all of the lines are completed. We can change this by introducing a new
statement to our language: goto.

If you were wondering why each line requires its own, increasing number, goto should provide an
explanation. The goto statement allows your program to jump from one line to another. For example,
the following program uses goto to skip the execution of a line.

10 print "this line is executed"
20 goto 40
30 print "this line is skipped"
40 print "this line is also executed"

With goto, there is a new potential danger in our programs: they might never finish execution. If in
the preceding code we had typed goto 10 instead of goto 40, the mote would endlessly execute
line 10 until the program was forced to stopped, either by either selecting “Stop” from the “Program”
menu or resetting the mote. However, we can use this functionality to our advantage.

BASIC gives us another means of controlling our programs: for loops. A for loop allows you to
execute a number of lines of code a specified number of times.

10 s = 0
20 for i = 1 to 10
30 print i
40 s = i + s
50 next i
60 print "sum is", s

Page 7 of 9

This program uses a for loop print all of the values between one and ten and their sum (55). The
program works by first clearing out the variable s, which will be used to accumulate our sum. The next
line is perhaps the most important. The for keyword is followed by the iteration variable and that
variable's initial value, in this case one, the to keyword and finally the terminating value, ten. All of
the lines following the for statement up until the next statement are considered to be the body of the
for loop. The body of the for loop is executed until the value of the iteration variable is equal to the
terminating value. After each iteration, that is, at the next statement, the value of the iteration
variable is increased by one. Both the initial value of the iteration variable and the terminating value
can be initialized using expressions, allowing for more complex loops.

GOSUB
Another mechanism for controlling flow is gosub. The gosub statement functions almost identically
to goto with one distinction: it is possible to return from where the gosub statement directed
execution using the return keyword. Consider the following example.

10 print "Executing line 10"
20 gosub 50
30 print "Executing line 30"
40 end
50 print "Executing line 50"
60 return

There are a few new concepts here. First, notice from the output that line 50 is executed after line 10
but before line 30. This is because we have directed the program to jump from 20 to line 50 with a
gosub statement, as though we had used a goto. The distinction occurs on line 60, were we issue the
return statement, which causes the application to execute the line following the last call to gosub.
Also, notice that after line 40, we do not execute line 50 a second time. This is because we use the end
statement to immediately halt our program. With gosub, it is possible to call the same part of our
application from different locations. For example, the following program uses gosub to double the
value in variable i from different locations in the code:

10 i = 5
20 gosub 80
30 print i
40 i = 30
50 gosub 80
60 print i
70 end
80 i = i * 2
90 return

Communication
A fundamental aspect of sensor motes is the way in which they communicate the data they collect. In
our BASIC environment, we provide one such means of communication with the send statement.
From a usage standpoint, send can be seen as nearly functionally equivalent to print, with the

Page 8 of 9

exception that data is sent to a base station that records the message. You can see this output in the
“Base Station Output” window. The following code should send the line “The value of a is 5” to the
base station window.

10 a = 5
20 send “The value of a is”, a

Unlike print, which is sent from the cable directly connected to the mote to the computer, send
transmits the sensor value wirelessly from your mote to another mote directly connected to the
computer. However, just as your cell phone occasionally loses signal or drops calls, the wireless
communication is not always reliable, unlike the print statement.

Page 9 of 9

