
WASP Manual

1 Introduction

WASP is a programming language for a subset of wireless sensor network applications that use stationary
nodes to periodically sample data and transmit them to a base station. Data can be processed locally
and aggregated at the network level.

When you start the test, the main window of the WASP programming environment will be open
for you on the desktop, as shown in Figure 1. Please keep it open during the test. If you close the main
window by accident, please ask your instructor to reopen it. The WASP programming environment
is where your program is edited and simulated. A network composed of four nodes is simulated in this
test.

2 WASP Programming Interface

The WASP main window is shown in Figure 1. It contains a menu bar and two tabs. The Code tab is
where your program is composed. The Results tab displays the simulation results.

2.1 Compose WASP program in the Code tab

The Code tab has two parts: Node-level Code and Network-level Code. The Node-level Code
area lets programmers describe functionality of each node, which includes sampling and data processing.
Instructions in the Node-level Code area are executed on every node in the network. The Net-
work Code area lets programmers specify how node-level data are aggregated at the network level and
transmitted to the base station.

Node-level Code

To add code for data sampling, click the Sample button. It will pop up a dialog as shown in Figure 2.
To compose a sampling instruction, first select the sensor type to read data from, then specify whether a

Table 1: Node-Level Data Processing Functions

Function name Arguments Returned result
max time variable[m:n] the maximum value in variable[m:n]
min time variable[m:n] the minimum value in variable[m:n]
avg time variable[m:n] average of the values in variable[m:n]
sum time variable[m:n] sum of the values in variable[m:n]

1

Figure 1: WASP programming and simulation environment.

Figure 2: Sample dialog.

single sample or periodically-repeated samples should be taken by clicking the Once or Periodic radio
button. Generally, single-point sampling is used for constant sensor readings. For example, location-
related sensor data do not change in a stationary network, so you only need to read the sensor data
once to determine the node’s location. For data that constantly change, users may want to sample at
an appropriate frequency to monitor the change. If periodic sampling is selected, you will be required
to specify the interval between sampling events using a positive number with a time unit. Finally, enter
a name to label the stored samples so you can refer to them in other instructions. Variable names are
composed of alphanumeric characters and underscores (). The first character of a variable name must
be a letter or an underscore. For example, light level and sound 5 are legal variable names, but 32light
is not. Variable names are case-sensitive. For example, VAR is a different variable from Var. Finally,
click the OK button to add the instruction to the node-level code segment. You will see a new row
representing the newly-created instruction added to the node-level instruction table.

Variables are locations for storing data. A variable can be viewed as an array. A variable created

2

Figure 3: Function dialog.

Figure 4: Expression dialog.

with single-point sampling is an array with only one data item in it. A variable created with periodic
sampling is an array with multiple data items stored in order of time. For example, if variable mylight
is created to sample light every 2 seconds, a light sensor reading will be appended to the mylight array
every 2 seconds. Data items in the array can be referred to via indexing. Index 0 represents the most-
recent sample, while index n represents the n most-recent data item. A sequence of data items can be
referred to using two indices, indicating a range. For example, mylight [0:9] returns the most-recent 10
samples. A variable name alone stands for the most-recent sample in its array. For example, mylight
means the most recent sample in array mylight ; it is the same as mylight [0].

Already-defined variables can be processed to generate other variables using functions. Functions
are portions of code that perform specific tasks. A function takes a fixed number (zero or more) of
parameters and returns a value. All the functions have already been implemented in WASP. Clicking
the Function button will open a dialog window as shown in Figure 3. First, enter a variable name to
save the result, then select a function from the function list, and specify its argument in the following
blank. The descriptions of functions provided in WASP are in Table 1. The argument you provide
for the function should have the same type shown in the table. If the computation needs to repeat as
its input updates periodically, “periodic” mode should be used by clicking the Periodic radio button.
Computation period is specified in a similar way in this case. Otherwise, select the “once” mode. Finally,
click the OK button to add the composed instruction to the node-level code table.

Data can also be processed using arithmetic expressions. Click the Expression button to open
the expression dialog. First, enter a variable name for the result. Then in the expression box enter
an arithmetic expression. Arithmetic expressions are composed of operands, binary operators, and
parenthesis. A binary operator can be +, -, *, or /. An operand can be a variable or a number. For

3

Figure 5: Network dialog.

example, (mylight ∗ 2 + 100)/10 is an arithmetic expression. Numbers are integers and decimals. For
example, 32 and -5 are integers; -2.5 and 3.22E-2 are decimals. Specify the computation mode in the
way described for the function dialog. Finally, click the OK button to add the instruction.

All the node-level instructions are shown in the Node-level Code table. If you want to modify an
instruction, you can select it by clicking on that row, and then click the Edit button. To remove an
instruction, select it and click the Remove button.

2.2 Network-Level Code

The network-level code segment lets programmers view the entire sensor network as a whole and use
network-level operations to extract the data they want from the sensor network.

Figure 6 demonstrates node filtering and data aggregation using a simple example. Each circle
represents one node with nodeid labeled inside the circle. Each of the nodes has two variables: x and
y. Their values are shown beside the circle. Assume we want to get the average of x among nodes that
have the same value of y, and we only want to consider nodes with x values larger than 1. The node
filtering condition, x > 1, selects nodes 1, 2, and 3. The grouping operation groups node 2 and 3 together
(because they have the same value of y), and node 1 forms a group by itself. Then the average of x is
computed within each group. The results are shown in Figure 6.

The dialog for composing network-level instructions is opened by clicking the Add button. The

4

0

x = 1
y = 2

2

x = 2
y = 3

1

x = 2
y = 2

3

x = 4
y = 3

y = 2
avg(x) = 2

y = 3
avg(x) = 3

Node-filtering: x > 1

Figure 6: Filtering and aggregation.

Table 2: Network-Level Aggregation Functions

Function name Arguments Returned result
max attribute the maximum value of attribute in each group
min attribute the minimum value of attribute in each group
avg attribute the average of attribute in each group
sum attribute the sum of attribute in each group

dialog is shown in Figure 5. First, decide whether you need to aggregate data from multiple nodes
using aggregation operations such as sum and average. If you only want to transmit the data from each
node to the base station, you should click the No radio button. Otherwise, click the Yes radio button.
Network-level aggregation functions apply to a set of nodes that are grouped together. If you check the
Yes radio button, the dialog will show the options to group the nodes. Check the node variables that
you want to group the nodes with. Nodes in the same group will have the same values for the selected
variables. Table 2 contains descriptions of the network-level aggregation functions. Please be aware of
the difference between the functions in Table 1 and those in Table 2. The node-level functions apply to
temporal data items from the same node. On the contrary, the network-level functions aggregate data
with the same time step across different nodes.

The box labeled “Data sent to base station” contains the data fields that are transmitted to the base
station. You can add items to it by selecting from the function and variable list and clicking the <<

button, or remove an item by selecting it and clicking the Remove button.
If you want to collect data from certain nodes that meet some criteria, you can filter the nodes

by entering a node-filtering-condition expression in the blank labeled From nodes of which. The
expression is composed of a single comparison operation or multiple comparison operations connected
with “and” and “or”. A comparison operation compares the values of two variables or compares the
value of a variable with a number. It takes the form, variable operator variable or variable operator

5

number. The operator can be > (greater than), < (less than), == (equal), >= (greater than or equal),
<= (less than or equal), or <> (not equal). For example, “nodeid > 10 and mylight < 50” is a valid
node-filtering-condition expression. If you do not need node-filtering, leave the blank empty.

If you want to collect aggregated data from certain groups that meet some criteria, you can filter the
groups by entering a group-selection-condition expression in the blank labeled From groups of which.
The group-selection-condition is composed of a single comparison operation or multiple comparison
operations connected with “and” and ”or”. A comparison operation compares aggregated result with a
number. For example, “avg(x) > 100” selects groups with average x larger than 100. If you do not need
group-filtering, leave the blank empty.

The Data transmission latency requirement widgets let you specify the maximum latency
between data sampling and its arrival at the base station. If you just want the data to be eventually
collected at the base station and have no latency requirement, check the Eventually radio button.
Otherwise, you should check the Within radio button and enter the maximum latency.

The network-level code segment can contain multiple instructions. An instruction will be executed
with the smallest period of the variables involved in the computation. If you sample different types of
sensor data with different periods, you may want to have one network-level instruction for each of them
in order to collect the data at a frequency consistent with its sampling frequency.

3 Simulate and Check Results in the Results Tab

When you complete the program in the Code tab, you can simulate it by clicking the Run button. If
it executes successfully, the Results tab will be brought to the front and data will be displayed there.
The Node samples area shows the sample readings on each node. The Base station area shows the
data received at the base station. To terminate the simulation, click the Stop button.

4 An Example Using WASP

In this section, we will use an example to demonstrate how to write a sensor network program in WASP.
Assume we want to deploy sensor nodes around a redwood tree to study its microclimate. The nodes

are able to sense temperature and barometric pressure. The height level of a node can be computed
from the pressure by pressure/100 + 2. Sensor nodes are static, so we only need to compute their height
levels once. Write a program to sample the average light at each height level and transfer this value to
the base station. Light will be sampled every 1 second on each node. Each node first averages its own
samples within 4 second intervals. Then these data are averaged for nodes within the same height levels.

Figure 7 shows the completed program. We have created four node-level variables. We used the
Sample dialog for creating the mylight and mypressure variables, the Expression dialog for creating
the height variable, and the Function dialog for creating the my avg light variable. For the network-level
code, we checked “Yes” for data aggregation and selected height as grouping variable.

Finally, click the Run button to simulation the program. Figure 8 shows the simulation results.
The Node samples area shows the sensor readings for each node at each time stamp. Data values

in the “[]” are listed in the order of the nodeid. For example,

Time 0 s, network sample pressure: [489, 777, 766, 995]

indicates that at time 0, node 0 samples light level 489, node 1 samples light level 777, etc.

6

Figure 7: Example program.

The Base station area shows the data received at the base station. The data values in the inner
square brackets follows the format in the preceding line. For example,

Time 8 s, base station received: [height, avg(my avg light),]

[[9, 527], [11, 394], [6, 742]]

indicates that at time 8 s, the base station received 3 groups of data. The first group has height value 9
and average light value 527, the second group has height value 11 and average light value 394, etc.

7

Figure 8: Simulation output of example.

8

	Introduction
	WASP Programming Interface
	Compose WASP program in the Code tab
	Network-Level Code

	Simulate and Check Results in the Results Tab
	An Example Using WASP

