
WASP Manual

1 Introduction

WASP is a programming language for a subset of wireless sensor network applications that use stationary
nodes to periodically sample data and transmit them to a base station. Data can be processed locally
and aggregated at the network level.

When you start the test, three windows will be open for you on the desktop, as shown in Figure 1.
Please keep them open during the test. If you close any of these windows by accident, please ask
your instructor to reopen it. In Figure 1, the window at the top layer is the WASP programming
environment, where your program is edited and run. The Network window shows program errors and
sampled data for each node. The Base station window shows the data received at the base station. A
network composed of four nodes is simulated in this test.

2 Concepts and Definitions

Here are some concepts and definitions we will use in this manual.

• Identifiers are composed of alphanumeric characters and underscores (). The first character
of an identifier must be a letter or an underscore. For example, light level and sound 5 are
legal identifiers, but 32light is not. Identifiers are used for variable names. Variable names are
case-sensitive. For example, VAR is a different variable from Var.

• Numbers are integers and decimals. For example, 32 and -5 are integers; -2.5 and 3.22E-2 are
decimals.

• Keywords are certain words that cannot be used in programs to name variables. Keywords are
case-insensitive: sample is the same as SAMPLE or Sample. WASP uses the following keywords:

SAMPLE, COLLECT, EVERY, INTO, WHERE, GROUPBY, HAVING, DELAY,
AND, OR, LOCAL, NETWORK, ms, sec, minute, hour, day

Function names and sensor names are also keywords. They are listed in Table 1, Table 2, and
Table 3.

• Variables are locations for storing data. Variable names must be identifiers. For example, var =
40 defines a variable named var and sets its value to 40. Node identifier nid is a special variable
with a value that is defined outside your program and stays unchanged. It is used to distinguish
sensor nodes from each other. You can directly use it in your program. You are not allowed to
assign values to nid.

1

Figure 1: WASP Programming and simulation environment.

• Arithmetic expressions are composed of variable names, binary operators, and parenthesis. A
binary operator can be +, -, *, or /. An operand can be an identifier or a number. For example,
(mysound ∗ 2 + 100)/10 is an arithmetic expression.

• A comparison operation compares the values of two variables or compares the value of a variable
with a number. It takes the form: identifier operator identifier or identifier operator number. The
operator can be > (greater than), < (less than), == (equal), >= (greater than or equal), <= (less
than or equal), or <> (not equal). The result of an comparison operation can either be true or
false. For example, mysound > 10 is true if mysound equals 20.

• Functions take a fixed number (zero or more) of parameters and return values. You can use a
function in the following way: function name(argument list). The argument list is a sequence of
arguments separated by “,”. An argument can be an identifier or a number.

• Comments are used to insert notes in one’s program. They do not affect functionality. In WASP,
“#” indicates the start of a comment, which extends to the end of a line.

2

Sensor Name light temperature humidity pressure sound

Table 1: Sensors.

Function name Arguments Returned result
MAX TIME buffer[m:n] the maximum value in buffer[m:n]
MIN TIME buffer[m:n] the minimum value in buffer[m:n]
AVG TIME buffer[m:n] average of the values in buffer[m:n]
SUM TIME buffer[m:n] sum of the values in buffer[m:n]

Table 2: Node-level Functions.

3 WASP Programming Language Construct

A program is composed of two segments. The node-local code segment is initiated with the keyword
“local:”. It describes node local behaviors, such as sampling and local data processing. The network-
level code segment is initiated with the keyword “network:”. It describes how data are aggregated at the
network level and gathered at the base station. A template for WASP programs is given below. Upper-
case words are commands; you don’t need to capitalize them when you write your program. Lower-case
words are descriptions of parameters at the corresponding location; you need to replace them with the
variables, functions, and expressions you want to use. Detailed descriptions are in Section 3.1 and
Section 3.2.

LOCAL:

SAMPLE sensor EVERY t time_unit INTO buffer

SAMPLE sensor INTO scalar

processed_data1 = function(arg1, arg2, ...) EVERY t time_unit

processed_data2 = function(arg1, arg2, ...)

processed_data3 = arithmetic_expression EVERY t time_unit

processed_data4 = arithmetic_expression

NETWORK:

COLLECT field1, filed2, ...

WHERE node-selection-conditions

GROUPBY node-variable-list

HAVING group-selection-conditions

DELAY t time_unit

COLLECT field3, field4, ...

WHERE node-selection-conditions

GROUPBY node-variable-list

HAVING group-selection-conditions

DELAY t time_unit

3

Function name Arguments Returned result
MAX attribute the maximum value of attribute in each group
MIN attribute the minimum value of attribute in each group
AVG attribute the average of attribute in each group
SUM attribute the sum of attribute in each group

Table 3: Network-level Functions.

3.1 Node-Local Code

The node-local code segment contains two types of functionalities.

• Data sampling: Specify the type of and frequency of sensor data sampling.

Syntax:

SAMPLE sensor EVERY t time unit INTO buffer

SAMPLE sensor INTO scalar

Sensor represents what type of sensor data to be sampled. It is selected from a given list as shown
in Table 1. t is the time interval between two samples; it must be a positive integer. time unit
is a time unit. It can be ms, sec, minute, hour, or day. The variable buffer is where sampled
data are stored. You can view it as a infinite array that stores the sampled data in a time series.
Buffer[0] represents the most recent sample. Buffer[n] represents the data sensed n samples ago.
Buffer[m:n] indicates the data gathered since n samples ago until m samples ago, which contains
n−m + 1 data elements. For example, buffer[0:9] returns the most recent 10 samples. As shown
in the second syntax, if you don’t specify the sampling period, it will be a single point sampling,
i.e., sample only once.

• Data processing: Specify how the raw sensed data are processed to generate other data. This
may be used for data interpretation, unit conversion, local event detection, etc.

Syntax:

new data = arithmetic expression

new data = arithmetic expression EVERY t time unit

new data = function(argument1, argument2, ...)

new data = function(argument1, argument2, ...) EVERY t time unit

Parameter t specifies how frequently the value of new data will be recomputed. Function is selected
from a library of built-in functions listed in Table 2. These functions are aggregation functions used
in node-level code. They aggregate data across time on each single node instead of aggregating
data across nodes.

3.2 Network-Level Code

The network-level code segment lets programmers view the entire sensor network as a whole and use
network-level operations to extract the data they want based on local data. Local data must be variables
defined in local level code segment. A list of supported operations follows.

4

• COLLECT field1, field2...: Collect data or aggregated data named field1, field2... from the
sensor network at the base station. A field can either be a node-level variable that are defined
in the node-level code or aggregated data across nodes in the network. Aggregation operations
apply to a set of nodes that are grouped together via the GROUPBY operation. Network-level
aggregation functions are shown in Table 3. These functions aggregate data across different nodes.
They are used in the network-level code segment. Only those nodes that are selected with WHERE
and HAVING commands are involved in the operation.

• WHERE node-selection-conditions: Select nodes that satisfy the specified conditions. The
conditions may contain multiple comparison operations, which are connected with AND or OR.
E.g., WHERE nodeid > 10 AND light < 50. If every node will be selected, you can eliminate this
statement.

• GROUPBY node-variable-list: Group nodes so that nodes in each group have the same values
of all the variables listed. If you do not need aggregation, you can eliminate this statement.

• HAVING group-selection-conditions: Select groups that satisfy the specified conditions. E.g.,
HAVING AVG(temperature) > 100 selects groups with average temperatures higher than 100.
Again, multiple comparison operations can be combined with AND or OR. If you do not group
nodes or you want to collect data from all groups, you can eliminate this statement.

• DELAY t time unit: Specify how fast should data be gathered. Parameter t means the max-
imum elapsed time since the data is generated until data arrive at the base station. If you just
require the data to be eventually gathered with arbitrary delay, eliminate this statement.

The network-level code segment can contain multiple COLLECT commands. Each COLLECT needs
to be followed by WHERE, GROUPBY, HAVING, and DELAY commands in order, yet any of them can
be optional depending on the application. A COLLECT command will be executed with the shortest
period of the collected data. If you sample different types of data with different periods, you may want
to have one collect command for each of them in order to collect the data at a frequency consistent with
its sampling frequency.

4 An Example Using WASP

In this section, we will show an example of how to write a sensor network program in WASP.
Assume we want to deploy sensor nodes around a redwood tree to study the microclimate of the

redwood tree. The nodes are able to sense temperature and barometric pressure. The height level of a
node can be computed from the pressure by pressure/100 + 2. Sensor nodes are static, so we only need
to compute nodes’ height levels once. Write a program to sample the average light at each height level
and transfer this value to the base station. Light will be sampled every 1 second on each node. Each
node first averages its own samples within 4 seconds, then the averaged data across nodes are averaged
within height levels.

local:

SAMPLE light EVERY 1 sec INTO lightbuf

SAMPLE pressure INTO mypressure

height = mypressure / 100 + 2

my_avg_light = AVG_TIME(lightbuf[0:3]) EVERY 4 sec

5

network:

COLLECT height, AVG(my_avg_light)

GROUPBY height

5 WASP Programming Environment

The programming environment, as shown in Figure 1, provides tools to check grammar errors in your
program and simulate its functionality. The steps to compromise your code, check it, and simulate it
follow.

1. Edit your program in the Program Text field. You can modify the template, or delete the
template by clicking the Clear button and edit your program from the scratch. The programming
template can be loaded to the Program Text field by clicking on the Load Template button.
Note that doing this will overwrite the code in the Program Text field.

2. Enter the name for your program in the File Name box, and click the Save and Check button
to save your program into a file and check for grammar errors. If there is no grammar error, you
should see the following line printed in the Network window:

Program check done. No syntax error found.

If there are syntax errors, the error message will be printed in the Network window.

3. Click the Run button to execute your program in a simulated sensor network. You can check the
results in the Network window and the Base station window. If you want to stop the simulation,
click the Stop button.

Figure 2 shows the simulation output of the example application in Section 4 in the Network window
and the Base station window. The Network window shows the sensor readings for each node at each
time stamp. Data values in the “[]” are listed in the order of the node id. For example,

Time 0 s, sample light : [618, 814, 284, 1009]

indicates that at time 0, node 0 samples light level 618, node 1 samples light level 814...
The Base station window shows the data received at the base station. The data values in the inner

square brackets follows the format in the preceding line. For example,

Time 8 s, base station received: [height,avg(my avg light),]

[[9, 450], [2, 560], [11, 452]]

indicates that at time 8 s, the base station received 3 groups of data. The first group has height value 9
and average light value 450, the second group has height value 2 and average light value 560, ...

6

Figure 2: Simulation output of example.

7

	Introduction
	Concepts and Definitions
	WASP Programming Language Construct
	Node-Local Code
	Network-Level Code

	An Example Using WASP
	WASP Programming Environment

