
TinyTemplate Manual

1 Introduction

TinyTemplate is a programming language for a subset of wireless sensor network applications that use
stationary nodes to periodically sample data and transmit them to a base station. TinyTemplate lets
programmers specify how each node reacts to certain events. We assume an one-hop network structure,
in which node 0 (the root node) is connected to a base station through its universal asynchronous
receiver/transmitter (UART), while other nodes can directly communicate with node 0 over radio.

When you start the test, three windows will be open for you on the desktop, as shown in Figure 1.
Please keep them open during the test. If you close any of these windows by accident, please ask your
proctor to reopen it. In Figure 1, the window at the top layer is the TinyTemplate programming
environment, where you programs are edited and run. The other two windows behind show simulation
results. A network composed of four nodes is simulated in this test. The Network window shows the
status of all the nodes in the network, including sampled data and data transmission to the base station.
The Base station window displays data received at the base station.

2 Concepts and Definitions

• Identifiers are composed of alphanumeric characters and underscores (). The first character of an
identifier must be a letter or an underscore. For example, mydata, abc 3, and 3m are identifiers,
while s@ and 3abc are not.

• Variables are locations for storing data. Variable names must be identifiers. TinyTemplate
variables are case insensitive: var is the same as VAR or Var.

• Keywords are certain words that cannot be used in programs to name variables. Keywords may
be written entirely in upper-case letters or entirely in lower-case letters. For example, shared can
also be written SHARED, but cannot be written sHarEd. The full list of TinyTemplate keywords
follows:

for to next step until end if then else private shared buffer not and or

• Functions are simply ways to execute a procedure, which may produce a value, modify variables,
or trigger an event. A function takes a fixed number (zero or more) of parameters. Some functions
return values, some do not. The return values of functions can be directly used as values or
parameters to functions. Functions are all provided by TinyTemplate. You can check the definitions
in the TinyTemplate programming environment.

1

Figure 1: Programming and simulation environment.

• Comments are used to insert notes in one’s program. They do not affect functionality. In
TinyTemplate, ! indicates the start of a comment, which extends to the end of a line. For
example,

counter = counter + 1; ! Increment counter.

3 TinyTemplate Programming Language Construct

3.1 Events and Handlers

In TinyTemplate, a program is broken into pieces called handlers that are triggered by events. Han-
dlers are the code executed after a particular event. An event is said to “fire” when the criteria for that
event are met. For example, the reboot event is fired when the mote is powered on or reset. Table 1
shows the five handlers in TinyTemplate.

3.2 Variables and Data Types

TinyTemplate has three kinds of variables: private, shared, and buffer. Private variables are local
to a handler; only the handler that declares the variable can access it. For example, if two handlers both

2

Handler name When the handler is triggered
Broadcast when the mote receives a message from another mote over radio.

Once when the once handler is initially sent to the mote.
Reboot when the mote is reset. (Every time a handler is injected to the network, all the nodes reboot.)
Timer0 when the the first timer fires. The timer can be set using the settimer0 function.
Timer1 when the the second timer fires. The timer can be set using the settimer1 function.

Table 1: Events in TinyTemplate.

have a private variable named counter, each one has its own, independent variable. In contrast, shared
variables are not unique to handlers; this allows two handlers to share data. If two handlers both have a
shared variable named counter, they can both read and write the same variable. Shared variables are
shared between handlers on the same node; they are not shared between nodes.

Buffer variables are arrays of a fixed maximum size, and are always shared. Buffers have a fixed
maximum size of 14 values. If you store more than 14 data elements into a buffer, it will cause a buffer
overflow error. The function bfull can be used to see if a buffer is full, while bsize indicates how many
entries it currently has. Individual buffer values can be accessed by indexing into a buffer. An empty
index value implies the tail (last value) of a buffer on access. The tail of a buffer can be appended or
removed. For example:

buffer aggBuffer;
aggBuffer[0] = 5; ! Put value 5 at the beginning of aggBuffer
aggBuffer[] = int(light()); ! Append a new light value to the buffer
val = aggBuffer[]; ! Remove the last value in the buffer and assign it to val

All variables in TinyTemplate must be declared before any program statements. A variable decla-
ration specifies the variable type (private, shared, or buffer), followed by the variable name and a
semicolon.

TinyTemplate has two basic data types: integers (positive whole numbers in the range of 0 to
32,767) and sensor readings. For example:

private val;
val = 1; ! val is an integer
val = light(); ! val is now a light reading
val = magX(); ! val is now a magnetometer reading (x-axis)

A buffer variable also has a type, which defines what values can be placed in it. A buffer can only
contain values of a single type. A buffer’s contents and type can be cleared with the bclear function. A
buffer takes the type of the first value put into it.

buffer bufOne;
bufOne[0] = 5; ! Put 5 in index 0: bufOne has size one, type integer
bufOne[] = id(); ! Append mote ID to bufOne, now has size two
bufOne[4] = 41; ! Put 41 in index 4; bufOne has size five, buf[2] and buf[3] are 0
bufOne[5] = light(); ! error: buffer is type integer, not light
bufOne[5] = int(light); ! legal: integer

3

3.3 Expression

Data in TinyTemplate can be manipulated using a number of operators in what is known as an expression.
TinyTemplate supports logical operations, arithmetic operations, and comparison operations. Logical
operations include and, or, and not. Arithmetic operations include + (add), - (subtract), * (multiply),
and / (divide). Comparison operations include = (equal), < (less than), > (greater than), <= (less than
or equal), >= (greater than or equal), and <> (not equal). Parenthesis pairs can be added to define
precedence, or for readability. For example,

i = (5 + 2) * 2; ! 5 and 2 are first added, then the result is multiplied by 2. i = 14

Data types limit what operations on a variable are valid. Sensor readings are immutable. You cannot
add an integer to a light reading, a light reading to a temperature reading, or even two light readings.
If you want to process sensor readings, you must turn them into integers with the int function. For
example,

private val;
val = light(); ! legal: val is now a light reading
val = light() / 2; ! error: cannot divide light reading by 2
val = light() + magX(); ! error: cannot add light and magX
val = light() + light(); ! error: cannot add two light readings
val = int(light()); ! legal: val is now an integer

3.4 Control Structures

Control structures control the order in which statements in a program are executed. So far, all the
examples execute lines of code sequentially, in order. Sometimes, you may want your program to skip
statements or repeatedly execute part of the program.

The first set of control structures, conditionals, cause a program to perform different actions based
on certain conditions. They take the following forms:

if <expression> then
<block 1>

end if
if <expression> then

<block 1>

else
<block 2>

end if

If expression resolves to true, then block 1 executes. If the statement has an else clause and
expression resolves to false, then block 2 executes. There can be nested if-then statements, in other
words, block 1 and block 2 can also contain if-then or if-then-else statement.

The for construct allows loops to be specified. There are two basic forms of loops, unconditional and
conditional. Unconditional (for-to) loops run a specific number of times; they terminate when the loop
variable takes a specific value. Conditional (for-until, for-while) loops run until an arbitrary condition

4

becomes true. Next defines the end of the loop block, and increments the loop variable. By default, the
variable increments by one. However, the increment step size can be set with the step keyword. The
loop control structure takes the following forms:

for <x> = <expression> to <to-constant>
<block1>

next <x>

for <x> = <expression> to <to-constant> step <step-constant>
<block1>

next <x>

for <x> = <expression> until <until-expression>

<block1>

next <x>

for <x> = <expression> step <step-constant> until <until-expression>

<block1>

next <x>

For example, the following loop runs one hundred times, incrementing count from 1 to 101.

private i;
private count;
count = 1;
for i = 0 to 100

count = count + 1;
next i

While this loop puts the values 2,4,6...,20 in the buffer.

private i;
buffer buf;
bclear(buf);
for i = 2 step 2 until i > 20

buf[] = i;
next i

3.5 Communication

The uart function takes a buffer as a parameter and sends that buffer contents over the mote’s UART.
The following Timer0 handler creates a buffer containing a node id and a light sample and sends it to
the UART.

buffer data;
data[0] = id();
data[1] = int(light());
uart(data);

5

Note that even the uart function is called for every node, only data from node 0 arrive at the base
station. This is because only mote 0 is connected to the base station via its UART. If you want to
transmit data from other nodes to the base station, you should use the bcast function to send a buffer
over the radio to all other nodes. If a mote hears a broadcast packet, it triggers the Broadcast handler.
So you can use the bcastbuf function in the broadcast handler to retrieve the data.

4 Programming Template

This section presents a template for TinyTemplate programs. It is also an example application that
samples light every two seconds and transmits the sum of light readings from all the nodes in the
network to the base station. Italic words are variables. Comments describe purpose of succeeding code
segments and give hints on how to modify the template to create new applications.

Timer0 Handler:

! Collected samples
private sample;
! Buffer for storing local samples
buffer data;
! Buffer for storing data collected from all the nodes. Only root node uses this buffer.
buffer alldata;
! Buffer for storing data to be send to base station.
! Only root node uses this buffer.
buffer sentdata;
! Private variables used for computation.
private size;
private i ;
! Data aggregation result
private sum;
! Sample sensor data
sample = int(light());
! Put sample to buffer data.
data[0] = sample;
if id() = 0 then
! Root node process alldata and put the aggregated results in sentdata.
! Replace with your code if you use other aggregation methods.

size = bsize(alldata);
if size > 0 then

sum = 0;
for i = 0 until i >= size

sum = sum + alldata[i];
next i
sentdata[0] = sum;

! Root node transmits aggregated data to the base station.
uart(sentdata);

! Clear alldata for next round of samples.

6

bclear(alldata);
end if

! Root node puts its own sample toalldata.
alldata[] = data[0];

else
! Other nodes send their data to root node by broadcasting.

bcast(data);
end if

Broadcast Handler:

! Buffer for storing data received over radio
buffer received ;
! Buffer for storing data collected from all the nodes
buffer alldata;
! Private variables used for computation
private i ;
private size;
! Root node retrieves data received over radio and put them in buffer alldata
if id() = 0 then

bclear(received);
received = bcastbuf();
size = bsize(received);

! Add received data to alldata.
for i = 0 until i >= size

alldata[] = received [i];
next i

end if

Reboot Handler:

! Set timer 0 period and start timer 0.
settimer0(20); ! Timer0 fires every 2 seconds.

5 Programming Environment

The TinyTemplate programming environment allows you to write and test TinyTemplate programs. As
shown in Figure 2, the programming environment consists of several windows. The Event Handler
buttons indicate which handler is selected for editing or injecting. The Handler Version indicates the
version of the current handler. It automatically increases when a handler is injected. You can ignore it in
this test. The program for a selected handler is entered in the Program Text window and is executed
by clicking the Inject button at the bottom left. Code entered in the Program Text window is not
saved until the Inject button is clicked. Therefore, you may want to use the Inject button to save your

7

program before switching to another handler. Shared variables used in your programs are displayed in
the Shared Variables window. The Functions window lists all the built-in functions. You can review
the description of a function in the Names Description window by clicking on the function name in
the list. TinyTemplate provides a programming template. Every time when TinyTemplate is started,
the program template is shown in the Program Text window. You can modify it to create application
of your own.

To run the template program, inject the Broadcast handler, the Timer0 handler, and finally the
Reboot handler. You should see outputs similar to that in Figure 3. The Network window shows
the sample data on each node. The number at the beginning of each line indicates the node id. The
Base station window shows the data collected at the base station. You can check the correctness by
adding the samples during one epoch in the Network window and compare the results with the data
received in the Base station window. For example, during the first epoch, the sampled light levels are
94, 659, 1021, and 840. Adding them up yields 2614. This result matches with the first result received
at the base station. To examine the returned data, you may want to stop the network from running the
program so the screen stops scrolling. To do this, modify the argument for the settimer0 function in
the Reboot handler to 0 and inject the Reboot handler.

Please pay attention to error messages when you inject a handler or run the simulation. Error
messages help you diagnose problems with your program. Grammar errors are detected when you inject
a handler. For example, if you make a typo when you use the uart function and call it uar, a window
as shown in Figure 4 will pop up when you try to inject your handler. You need to click the OK
button in the window and go back to the Program Text field to fix the error. Your handler cannot be
successfully injected or saved until all grammar errors are fixed. Other errors occur during runtime. For
example, if you constantly append data to a buffer without clearing it, it will cause a buffer overflow
error when you run the simulation. In this case, a window like Figure 5 will pop up when you run the
simulation for a while. It indicates which handler causes this problem by pointing out in which context
it happened. Error messages will also be printed in the Network window, as shown in Figure 6. In this
case, you should stop the simulation, fix the error in the indicated handler and restart the simulation.
Unfortunately, the error window does not go away even you fix the problem. You can ignore it and just
monitor the Network window to see if the error is gone.

To write an application of your own, you can follow these steps.

1. Select the handler you want to edit by checking the corresponding Event Handler button. (Usu-
ally you can start with the Timer0 handler to specify what each node does when its timer fires,
then edit the Broadcast handler to specify what should be exectued when a node received a
message over radio, and finally theReboot handler to set the timer and start the timer.)

2. Modify the template code for that handler in the Program Text field to implement your own
application.

3. Inject the handler by clicking the Inject button. If an error message window pops up, you need
to fix the error in your handler and reinject it until no more errors are reported.

4. Select another handler and repeat the above steps.

5. Watch the results in the Network window and the Base station window to check the correctness
of your code.

8

Figure 2: Programming environment of TinyTemplate.

9

Figure 3: Results of the template program.

Figure 4: Undefined function error. Figure 5: Buffer overflow error.

10

Figure 6: Buffer overflow message in network window.

11

	Introduction
	Concepts and Definitions
	TinyTemplate Programming Language Construct
	Events and Handlers
	Variables and Data Types
	Expression
	Control Structures
	Communication

	Programming Template
	Programming Environment

