
TinyScript Manual

1 Introduction

TinyScript is a programming language for wireless sensor network. It lets programmers specify how each
node reacts to certain events. We assume an one-hop network structure, in which node 0 (the root node)
is connected to a base station through its universal asynchronous receiver/transmitter (UART), while
other nodes can directly communicate with node 0 over radio. In this test, the computer in front of you
is the base station.

When you start the test, three windows will be open for you on the desktop, as shown in Figure 1.
Please keep them open during the test. If you close any of these windows by accident, please ask your
instructor to reopen it. In Figure 1, the window at the top layer is the TinyScript programming
environment, where you programs are edited and run. The other two windows behind show simulation
results. A network composed of four nodes is simulated in this test. The Network window shows the
status of all the nodes in the network, including LEDs, sampled data, and transmitted data. The Base
station window displays data received at the base station.

2 Concepts and Definitions

• Identifiers are composed of alphanumeric characters and underscores (). The first character of an
identifier must be a letter or an underscore. For example, mydata, abc 3, and 3m are identifiers,
while s@ and 3abc are not.

• Variables are locations for storing data. Variable names must be identifiers. TinyScript variables
are case insensitive: var is the same as VAR or Var.

• Keywords are certain words that cannot be used in programs to name variables. Keywords may
be written entirely in upper-case letters or entirely in lower-case letters. For example, shared can
also be written SHARED, but cannot be written sHarEd. The full list of TinyScript keywords
follows:

for to next step until end if then else private shared buffer not and or

• Functions are simply ways to execute a procedure, which may produce a value, modify variables,
or trigger an event. A function takes a fixed number (zero or more) of parameters. Some functions
return values, some do not. The return values of functions can be directly used as values or
parameters to functions. Functions are all provided by TinyScript. You can check their definitions
in the TinyScript programming environment.

• Comments are used to insert notes in one’s program. They do not affect functionality. In
TinyScript, ! indicates the start of a comment, which extends to the end of a line. For example,

1

Figure 1: Programming and simulation environment.

Event name When triggered
Broadcast Broadcast occurs when the mote receives a message from another mote.

Once Once occurs when the once handler is initially sent to the mote.
Reboot Reboot occurs whenever the mote is reset.
Timer0 Timer0 occurs when the the first timer fires. The timer can be set using the settimer0 function.
Timer1 Timer1 occurs when the the second timer fires. The timer can be set using the settimer1 function.
Trigger Trigger occurs when the trigger function is called.

Table 1: Events in TinyScript.

counter = counter + 1; ! Increment counter.

3 TinyScript Programming Language Construct

3.1 Events and Handlers

In TinyScript, a program is broken into pieces called handlers that are triggered by events. Handlers
are the code executed after a particular event. An event is said to “fire” when the criteria for that event
are met. For example, the reboot event is fired when the mote is powered on or reset. Table 1 shows the
six events in TinyScript.

3.2 Variables and Data Types

TinyScript has three kinds of variables: private, shared, and buffer. Private variables are local to
a handler; only the handler that declares the variable can access it. For example, if two handlers both

2

have a private variable named counter, each one has its own, independent variable. In contrast, shared
variables are not unique to handlers; this allows two handlers to share data. If two handlers both have a
shared variable named counter, they can both read and write the same variable. Shared variables are
only shared between handlers on the same node; they are not shared across nodes.

Buffer variables are arrays of a fixed maximum size, and are always shared. Buffers have a fixed
maximum size of 14 values. If you store more than 14 data elements into a buffer, it will cause a buffer
overflow error. The function bfull can be used to see if a buffer is full, while bsize indicates how many
entries it currently has. Individual buffer values can be accessed by indexing into a buffer. The following
program obtains the median value stored in a buffer:

shared size;
shared median;
buffer aggBuffer;
bsorta(aggBuffer); ! Sort buffer entries in ascending order
size = bsize(aggBuffer); ! Number of entries in buffer
median = aggBuffer[size / 2]; ! Return median value

An empty index value implies the tail (last value) of a buffer on access. The tail of a buffer can be
appended or removed. For example:

val = aggBuffer[]; ! Remove the last value in the buffer and assign it to val
aggBuffer[] = light(); ! Append a new light value to the buffer

All variables in TinyScript must be declared before any program statements. A variable declaration
specifies the variable type (private, shared, or buffer), followed by the variable name and a semicolon.
For example, the following program is invalid (and will produce a compilation error):

shared counter; ! Declare a shared variable, counter
counter = counter + 1; ! Increment it
shared index; ! Declare another shared variable, index: ERROR

TinyScript has two basic data types: integers (positive whole numbers in the range of 0 to 32,767)
and sensor readings. For example:

private val;
val = 1; ! val is an integer
val = light(); ! val is now a light reading
val = magX(); ! val is now a magnetometer reading (x-axis)

A buffer variable also has a type, which defines what values can be placed in it. A buffer can only
contain values of a single type. A buffer’s contents and type can be cleared with the bclear function. A
buffer takes the type of the first value put into it.

buffer bufOne;
buffer bufTwo;
bclear(bufOne); ! clear bufOne
bufOne[0] = 5; ! Put 5 in index 0: bufOne has size one, type integer

3

bufOne[] = id(); ! Append mote ID to bufOne, now has size two
bufOne[4] = 41; ! Put 41 in index 4; bufOne has size five, buf[2] and buf[3] are 0
bufOne[5] = light(); ! error: buffer is type integer, not light
bufOne[5] = int(light); ! legal: integer

3.3 Expression

Data in TinyScript can be manipulated using a number of operators in what is known as an expression.
TinyScript supports logical operations, arithmetic operations, and comparison operations. Logical op-
erations include and, or, and not. Arithmetic operations include + (add), - (subtract), * (multiply),
and / (divide). Comparison operations include < (less than), > (greater than), <= (less than or equal),
>= (greater than or equal), and <> (not equal). Parenthesis pairs can be added to define precedence,
or for readability. For example,

i = (5 + 2) * 2; ! 5 and 2 are first added, then the result is multiplied by 2. i = 14

Data types limit what operations on a variable are valid. Sensor readings are immutable. You cannot
add an integer to a light reading, a light reading to a temperature reading, or even two light readings.
If you want to process sensor readings, you must turn them into integers with the int function. For
example,

private total;
private count;
private val;
val = light(); ! legal: val is now a light reading
val = light() / 2; ! error: cannot divide light reading by 2
val = light() + magX(); ! error: cannot add light and magX
val = light() + light(); ! error: cannot add two light readings
val = int(light()); ! legal: val is now an integer
total = total + val; ! legal: total was an int
count = count + 1; ! legal: count was an int
val = total/count; ! legal: average of readings

3.4 Control Structures

Control structures control the order in which statements in a program are executed. So far, all the
examples execute lines of code sequentially, in order. Sometimes, you may want your program to skip
statements or repeatedly execute part of the program.

The first set of control structures, conditionals, cause a program to perform different actions based
on certain conditions. They take the following forms:

if <expression> then
<block 1>

end if

4

if <expression> then
<block 1>

else
<block 2>

end if

If expression resolves to true, then block 1 executes. If the statement has an else clause and
expression resolves to false, then block 2 executes. There can be nested if-then statements, in other
words, block 1 and block 2 can also contain if-then or if-then-else statement.

The for construct allows loops to be specified. There are two basic forms of loops, unconditional and
conditional. Unconditional (for-to) loops run a specific number of times; they terminate when the loop
variable takes a specific value. Conditional (for-until, for-while) loops run until an arbitrary condition
becomes true. Next defines the end of the loop block, and increments the loop variable. By default, the
variable increments by one. However, the increment step size can be set with the step keyword. The
loop control structure takes the following forms:

for <x> = <expression> to <to-constant>
<block1>

next <x>

for <x> = <expression> to <to-constant> step <step-constant>
<block1>

next <x>

for <x> = <expression> until <until-expression>

<block1>

next <x>

for <x> = <expression> step <step-constant> until <until-expression>

<block1>

next <x>

For example, the following loop runs one hundred times, incrementing count from 1 to 101.

private i;
private count;
count = 1;
for i = 0 to 100

count = count + 1;
next i

While this loop puts the values 2,4,6...,20 in the buffer.

private i;
buffer buf;
for i = 2 step 2 until i > 20

buf[] = i;
next i

You can set the step to zero if the loop variable is not used in the conditional or the enclosed code
block. This loop, for example, puts random values into a buffer until it is full:

5

Argument Action Argument Action Argument Action
9 red off 17 red on 25 red toggle
10 green off 18 green on 26 green toggle
12 yellow off 20 yellow on 28 yellow toggle

Table 2: The led function.

private i;
buffer buf;
for i = 0 step 0 until bfull(buf)

buf[] = rand();
next i

3.5 Communication

The uart function takes a buffer as a parameter and sends that buffer contents over the mote’s UART.
The following Timer0 handler creates a buffer containing a node id and a light sample and sends it to
the UART.

buffer data;
data[0] = id();
data[1] = int(light());
uart(data);

You also need to edit the Once handler to start timer 0:

settimer0(20); ! Fires timer 0 every 2 seconds.

The function settimer0 controls the rate at which timer0 fires and triggers the timer0 event. The
parameter is in terms of tenths of a second, so 20 sets the period to two seconds. Calling settimer0 with
0 will stop the timer.

If the above script is running, you should see output similar to that in Figure 2. The Network
window monitors each node in the network. The number at the beginning of each line indicates the
node id. The Base station window shows the data collected at the base station. You may notice that
though there are four motes in the network, only data from node 0 arrive at the base station. This is
because only mote 0 is connected to the base station via its UART. If you want to transmit data from
other nodes to the base station, you should use the bcast function to send a buffer over the radio to all
other nodes. If a mote hears a broadcast packet, it triggers the Broadcast handler. So you can use the
bcastbuf function in the broadcast handler to retrieve the data.

4 Programming Environment

The TinyScript programming environment allows you to write and test TinyScript programs. As shown
in Figure 6, the programming environment consists of several windows. The Event Handler buttons
indicate which handler is selected for editing or injecting. The program for a selected handler is entered

6

in the Program Text window and is executed by clicking the Inject button at the bottom left. Code
entered in the Program Text window is not saved until the Inject button is clicked. Therefore, you
may want to use the Inject button to save your programs before switching to another handler. Shared
variables used in your programs are displayed in the Shared Variables window. The Functions
window lists all the built-in functions. You can review the description of a function in the Names
Description window by clicking on the function name in the list.

Please pay attention to error messages when you inject a handler or run the simulation. Error
messages help you diagnose problems with your program. Grammar errors are detected when you inject
a handler. For example, if you make a typo when you use the uart function and call it uar, a window as
shown in Figure 3 will pop up when you try to inject your handler. You need to click the OK button in
the window to close it first and go back to the Program Text field to fix the error. Your handler cannot
be successfully injected or saved until all grammar errors are fixed. Other errors occur during runtime.
For example, if you constantly append data to a buffer without clearing it, it will cause a buffer overflow
error when you run the simulation. In this case, a window like Figure 4 will pop up when you run the
simulation for a while. It indicates which handler causes this problem by pointing out in which context
it happened. Error messages will also be printed in the Network window, as shown in Figure 5. In this
case, you should stop the simulation, fix the error in the indicated handler and restart the simulation.
Unfortunately, the error window does not go away even you fix the problem. You can ignore it and just
monitor the Network window to see if the error is gone.

We will use a simple example to demonstrate how to work with the programming environment.
First, select the reboot event in the Event Handler window. Then enter the following program in the
Program Text window:

led(17);

After clicking the Inject button, the Network window will print information as shown in Figure 7.
It indicates that initially all the three LEDs on each node are off, then the red LED is illuminated. The
led function is described in Table 2. If you do not get similar results, confirm that you have entered the
correct program. If this doesn’t fix the problem, please ask your instructor for help. If the text appears
then you have successfully written your first TinyScript test program.

7

Figure 2: Results on the monitor.

Figure 3: Undefined function error. Figure 4: Buffer overflow error.

8

Figure 5: Buffer overflow message in network window.

9

Figure 6: Developing environment of TinyScript.

10

Figure 7: Example.

11

	Introduction
	Concepts and Definitions
	TinyScript Programming Language Construct
	Events and Handlers
	Variables and Data Types
	Expression
	Control Structures
	Communication

	Programming Environment

