TinyScript Manual

1 Introduction

TinyScript is a programming language for wireless sensor network. It lets programmers specify how each
node reacts to certain events. We assume an one-hop network structure, in which node 0 (the root node)
is connected to a base station through its universal asynchronous receiver/transmitter (UART'), while
other nodes can directly communicate with node 0 over radio. In this test, the computer in front of you
is the base station.

When you start the test, three windows will be open for you on the desktop, as shown in Figure 1.
Please keep them open during the test. If you close any of these windows by accident, please ask your
instructor to reopen it. In Figure 1, the window at the top layer is the TinyScript programming
environment, where you programs are edited and run. The other two windows behind show simulation
results. A network composed of four nodes is simulated in this test. The Network window shows the
status of all the nodes in the network, including LEDs, sampled data, and transmitted data. The Base

station window displays data received at the base station.

2 Concepts and Definitions

e Identifiers are composed of alphanumeric characters and underscores (). The first character of an
identifier must be a letter or an underscore. For example, mydata, abc_3, and _3m are identifiers,

while s@ and 3abc are not.

e Variables are locations for storing data. Variable names must be identifiers. TinyScript variables

are case insensitive: var is the same as VAR or Var.

e Keywords are certain words that cannot be used in programs to name variables. Keywords may
be written entirely in upper-case letters or entirely in lower-case letters. For example, shared can
also be written SHARED, but cannot be written sHarEd. The full list of TinyScript keywords
follows:

for to next step until end if then else private shared buffer not and or

e Functions are simply ways to execute a procedure, which may produce a value, modify variables,
or trigger an event. A function takes a fixed number (zero or more) of parameters. Some functions
return values, some do not. The return values of functions can be directly used as values or
parameters to functions. Functions are all provided by TinyScript. You can check their definitions

in the TinyScript programming environment.

e Comments are used to insert notes in one’s program. They do not affect functionality. In

TinyScript, ! indicates the start of a comment, which extends to the end of a line. For example,

@ lancey on longshan: jopt/tinyos-1.x/apps/TinyScript - Network - Konsole =g [x]
Session Edit View Bookmarks Settings Help

Z: LEDS: Red off.

2: LEDS: Green off.

Z: LEDS: Yellow off.
Opening tossim-serial source
Connecting to Tossim event port at localhost:10585
Connection opened to TOSSIM ey > =
Connecting to Tossim command g TinyOS VM Scripter =
Connection opened to Tossim cf fe

Starting Scripter GUI with so

0: LEDS: Red off. Frogram Text Funaions
0: LEDS: Green off. Tiny Script for TinyScriptyM
0: LEDS: Yellaw off. accelx) 4
1: LEDS: Red off. Handler Version |1 accelyd
1: LEDS: Green off. =11 | beastou
1: LEDS: Yellow off. Event Handler ! 21| | betear guutren
Loaded configuration. - ; Elgllt‘l':bmu'"l)'
Program file programs.txt doe Broadcast sizeoutrer
Loaded saved scripter state. O onee t o o)
set theme OK O keboot & eqtypefany, any)
Set L&F [Timerd 7 _tdvao
i
| O Timer. A i {reading)
il led{value)
=] i network (o 10 | s
12 gy
Shared Variables magyd
& lancey on longshan: joptjtinyos- B micQ
= 14 rand{ =l
N 15
Session Edit View Bockmarks Sett] e [Name:
D
Sppe/Tinuscripts> ./listen H escription
Opening tossim-serial source 19
Conmecting to Tossim event po 20
Conmection opened to TOSSIM e 21
Connecting to Tossim command 22
Connection opened to Tossim o gj
5
26
7
28
29
]
Inject | P hd
4 »

@ @ Base station J
Figure 1: Programming and simulation environment.
Event name When triggered
Broadcast Broadcast occurs when the mote receives a message from another mote.
Once Once occurs when the once handler is initially sent to the mote.
Reboot Reboot occurs whenever the mote is reset.
Timer0 Timer0 occurs when the the first timer fires. The timer can be set using the settimer(function.
Timerl Timerl occurs when the the second timer fires. The timer can be set using the settimer! function.
Trigger Trigger occurs when the trigger function is called.

Table 1: Events in TinyScript.

counter = counter + 1; ! Increment counter.

3 TinyScript Programming Language Construct

3.1 Events and Handlers

In TinyScript, a program is broken into pieces called handlers that are triggered by events. Handlers
are the code executed after a particular event. An event is said to “fire” when the criteria for that event
are met. For example, the reboot event is fired when the mote is powered on or reset. Table 1 shows the

six events in TinyScript.

3.2 Variables and Data Types

TinyScript has three kinds of variables: private, shared, and buffer. Private variables are local to
a handler; only the handler that declares the variable can access it. For example, if two handlers both

have a private variable named counter, each one has its own, independent variable. In contrast, shared
variables are not unique to handlers; this allows two handlers to share data. If two handlers both have a
shared variable named counter, they can both read and write the same variable. Shared variables are
only shared between handlers on the same node; they are not shared across nodes.

Buffer variables are arrays of a fixed maximum size, and are always shared. Buffers have a fixed
maximum size of 14 values. If you store more than 14 data elements into a buffer, it will cause a buffer
overflow error. The function bfull can be used to see if a buffer is full, while bsize indicates how many
entries it currently has. Individual buffer values can be accessed by indexing into a buffer. The following

program obtains the median value stored in a buffer:

shared size;

shared median;

buffer aggBuffer;

bsorta(aggBuffer); ! Sort buffer entries in ascending order
size = bsize(aggBuffer); | Number of entries in buffer

median = aggBuffer[size / 2]; ! Return median value

An empty index value implies the tail (last value) of a buffer on access. The tail of a buffer can be

appended or removed. For example:

val = aggBuffer[]; | Remove the last value in the buffer and assign it to val
aggBuffer[] = light(); ! Append a new light value to the buffer

All variables in TinyScript must be declared before any program statements. A variable declaration
specifies the variable type (private, shared, or buffer), followed by the variable name and a semicolon.

For example, the following program is invalid (and will produce a compilation error):

shared counter; ! Declare a shared variable, counter
counter = counter + 1; ! Increment it
shared index; ! Declare another shared variable, index: ERROR

TinyScript has two basic data types: integers (positive whole numbers in the range of 0 to 32,767)
and sensor readings. For example:

private val;
val = 1; ! val is an integer
val = light(); ! val is now a light reading

val = magX(); ! val is now a magnetometer reading (x-axis)

A buffer variable also has a type, which defines what values can be placed in it. A buffer can only
contain values of a single type. A buffer’s contents and type can be cleared with the bclear function. A
buffer takes the type of the first value put into it.

buffer bufOne;

buffer bufTwo;

belear(bufOne); ! clear bufOne

bufOne[0] = 5; ! Put 5 in index 0: bufOne has size one, type integer

bufOne[] = id(); ! Append mote ID to bufOne, now has size two

bufOne[4] = 41; ! Put 41 in index 4; bufOne has size five, buf[2] and buf[3] are 0
bufOne[5] = light(); ! error: buffer is type integer, not light

bufOne[5] = int(light); ! legal: integer

3.3 Expression

Data in TinyScript can be manipulated using a number of operators in what is known as an expression.
TinyScript supports logical operations, arithmetic operations, and comparison operations. Logical op-
erations include and, or, and not. Arithmetic operations include + (add), - (subtract), * (multiply),
and / (divide). Comparison operations include < (less than), > (greater than), <= (less than or equal),
>= (greater than or equal), and <> (not equal). Parenthesis pairs can be added to define precedence,

or for readability. For example,

i=(5+42)*2;!5and 2 are first added, then the result is multiplied by 2. i = 14

Data types limit what operations on a variable are valid. Sensor readings are immutable. You cannot
add an integer to a light reading, a light reading to a temperature reading, or even two light readings.
If you want to process sensor readings, you must turn them into integers with the int function. For

example,

private total;
private count;

private val;

val = light(); ! legal: val is now a light reading
val = light() / 2; ! error: cannot divide light reading by 2
val = light() + magX(); ! error: cannot add light and magX

val = light() + light(); ! error: cannot add two light readings
val = int(light()); ! legal: val is now an integer

total = total + val; ! legal: total was an int

count = count + 1; ! legal: count was an int

val = total/count; ! legal: average of readings

3.4 Control Structures

Control structures control the order in which statements in a program are executed. So far, all the
examples execute lines of code sequentially, in order. Sometimes, you may want your program to skip
statements or repeatedly execute part of the program.

The first set of control structures, conditionals, cause a program to perform different actions based

on certain conditions. They take the following forms:

if <expression> then
<block 1>
end if

if <expression> then
<block 1>

else
<block 2>

end if

If expression resolves to true, then block 1 executes.

expression resolves to false, then block 2 executes. There can be nested if-then statements, in other
words, block 1 and block 2 can also contain if-then or if-then-else statement.

The for construct allows loops to be specified. There are two basic forms of loops, unconditional and
conditional. Unconditional (for-to) loops run a specific number of times; they terminate when the loop
variable takes a specific value. Conditional (for-until, for-while) loops run until an arbitrary condition
becomes true. Next defines the end of the loop block, and increments the loop variable. By default, the
variable increments by one. However, the increment step size can be set with the step keyword. The

loop control structure takes the following forms:

for <x> = <expression> to <to-constant>

<blockl>
next <x>

for <x> = <expression> to <to-constant> step <step-constant>

<blockl>
next <x>

for <x> = <expression> until <until-expression>

<blockl>
next <x>

for <x> = <expression> step <step-constant> until <until-expression>

<blockl>
next <x>

For example, the following loop runs

private i;
private count;
count = 1;
for i = 0 to 100
count = count + 1;

next i
‘While this loop puts the values 2,4,6

private i;

buffer buf;

for i = 2 step 2 until i > 20
buf]] = i;

next i

You can set the step to zero if the loop variable is not used in the conditional or the enclosed code
block. This loop, for example, puts random values into a buffer until it is full:

one hundred times, incrementing count from 1 to 101.

...,20 in the buffer.

If the statement has an else clause and

Argument Action Argument Action Argument Action
9 red off 17 red on 25 red toggle
10 green off 18 green on 26 green toggle
12 yellow off 20 yellow on 28 yellow toggle

Table 2: The led function.

private i;

buffer buf;

for i = 0 step 0 until bfull(buf)
buf[] = rand();

next i

3.5 Communication

The wart function takes a buffer as a parameter and sends that buffer contents over the mote’s UART.
The following Timer0 handler creates a buffer containing a node id and a light sample and sends it to
the UART.

buffer data;

datal0] = id();
data[l] = int(light());
uart(data);

You also need to edit the Once handler to start timer 0:
settimer0(20); ! Fires timer 0 every 2 seconds.

The function settimer(0 controls the rate at which timer0 fires and triggers the timer0 event. The
parameter is in terms of tenths of a second, so 20 sets the period to two seconds. Calling settimer(with
0 will stop the timer.

If the above script is running, you should see output similar to that in Figure 2. The Network
window monitors each node in the network. The number at the beginning of each line indicates the
node id. The Base station window shows the data collected at the base station. You may notice that
though there are four motes in the network, only data from node 0 arrive at the base station. This is
because only mote 0 is connected to the base station via its UART. If you want to transmit data from
other nodes to the base station, you should use the bcast function to send a buffer over the radio to all
other nodes. If a mote hears a broadcast packet, it triggers the Broadcast handler. So you can use the

beastbuf function in the broadcast handler to retrieve the data.

4 Programming Environment

The TinyScript programming environment allows you to write and test TinyScript programs. As shown
in Figure 6, the programming environment consists of several windows. The Event Handler buttons
indicate which handler is selected for editing or injecting. The program for a selected handler is entered

in the Program Text window and is executed by clicking the Inject button at the bottom left. Code
entered in the Program Text window is not saved until the Inject button is clicked. Therefore, you
may want to use the Inject button to save your programs before switching to another handler. Shared
variables used in your programs are displayed in the Shared Variables window. The Functions
window lists all the built-in functions. You can review the description of a function in the Names
Description window by clicking on the function name in the list.

Please pay attention to error messages when you inject a handler or run the simulation. Error
messages help you diagnose problems with your program. Grammar errors are detected when you inject
a handler. For example, if you make a typo when you use the wart function and call it uwar, a window as
shown in Figure 3 will pop up when you try to inject your handler. You need to click the OK button in
the window to close it first and go back to the Program Text field to fix the error. Your handler cannot
be successfully injected or saved until all grammar errors are fixed. Other errors occur during runtime.
For example, if you constantly append data to a buffer without clearing it, it will cause a buffer overflow
error when you run the simulation. In this case, a window like Figure 4 will pop up when you run the
simulation for a while. It indicates which handler causes this problem by pointing out in which context
it happened. Error messages will also be printed in the Network window, as shown in Figure 5. In this
case, you should stop the simulation, fix the error in the indicated handler and restart the simulation.
Unfortunately, the error window does not go away even you fix the problem. You can ignore it and just
monitor the Network window to see if the error is gone.

We will use a simple example to demonstrate how to work with the programming environment.
First, select the reboot event in the Event Handler window. Then enter the following program in the

Program Text window:
led(17);

After clicking the Inject button, the Network window will print information as shown in Figure 7.
It indicates that initially all the three LEDs on each node are off, then the red LED is illuminated. The
led function is described in Table 2. If you do not get similar results, confirm that you have entered the
correct program. If this doesn’t fix the problem, please ask your instructor for help. If the text appears

then you have successfully written your first TinyScript test program.

uo|els aseg me @

Q
[9691[0]

200Z 103 BZITEIGT BT WML MYl @ Z 5215 ‘y393INI 2dfil 40 JUS44n0 1SEOPEOIY PaATSDSY
[TET1[0]

2007 103 £Z:TEIGT AT UNC MYl @ Z 9215 “y393IMI 2dfil 40 Ja44ng 3SE0peouq panls2sy
[S£F100]

2002 103 GZ:ITEIGT 6T Unf Nyl @ z 821s ‘y393INI adfl 40 Jaggng 1seopecdd paaTsday
[9£31[0]

200Z 103 £ZiTEIGT BT UNL NYl @ 2 3218 ‘y393INI 2dfil 40 J4a44ng 1SE0pE0Ly PaATaDay
[zz1[0]

200Z 103 TZITEIGT BT WML NYl @ Z 8215 ‘y393INI 2dfil 40 JUS44n0 1SEDPEOIY PaATSDSY
[£24100]

2007 103 GT:ITEIGT AT UNC MYl @ Z 9215 ‘y393INI 2dfil 40 J844ng 3SE0peouq paalsdsy
[2061[0]

2002 103 LTITEIGT 6T Unf Nyl @ z 8215 ‘Y393INI adfl 40 Jaggng 1seopecdd paaTsday
[9521[0]

3 9T:0LIGT AT UNC N4l @ Z 921s ‘y393INI =2dfia 40 4344 3SEIpEOUn PaATSISY
3] [£z11[0]

digH sbumes sjiewoog M3l Wp3 uoIssas

@ @@ 3JosuUoy - UoIIelS ased - edle|quog/sddefx -T-soAumi/idof :ueysbuo| uo A3due| |

Jomisn

@ 000FEFIS T PGIZ:0 SWI1 18 UOT1E1S 3SEC 01 BIEQ SPUAS © 230)
GGE @nTeEA 3Y31] a1dues
ﬁu 056/ FF99°FG1Z2:0 SWTIT 3B UDT3E]S aseq 03 BlEQ Spuas T 330K
0fF 8NTEA IYSTT ardues

055954257 #5250 SWT] 38 UOTRElS aSeq 01 E1EpQ SpUas () 230
g0 an{es U317 21dues

058925997 252250 SWTY 3F UOT1Els 3SeQq 01 E1EpQ SpUuas Z a0
ZEg antea 3ys17 a1dues

00g90599° 26210 3WTl 18 UOT1Eels aseq 01 BlEp sSpuas ¢ 210)
OFF @nTes 3Y31] a1dues

0SZ09F99° 25250 SWTl 38 UOTlels aseq 01 Blep spuas T 230
gor anTes IYsSTT ardues

0SCE94Z25° 255250 SWT] 38 UOTRElS aSeq 01 E1Ep SpUas () 230)
TrT an{es 3Ys17 a1dues

059RE599°05:2:0 SWI3 3B UOTIELS 3SEQ 0} EREP SpUSS 7 830
5 antea Y311 a1dues

0096TG99 QG Z:0 SwWIl 1E LUOT1E1S 3SEQ 01 E1ER SPUSsS £ 830
SFF anTes 3Y31] a1dues

OSTELFI9° 05250 SWTY 38 UOT1els aseq 01 Blep spuas T 230
[+] GEZ 3NTEA IYSTT ardues

AAMMNN OO AAM MG OO AAMM

dgH sbumes sylewsoog MmalA Up3 UOISSES

X O = 3J0sU0) - JIomIaN - BdINe|Iquog/sddefx-T-soAun/ido/ :ueysbuo| uo Aadue| (=

Results on the monitor.

Figure 2

EROADCAST
: 20

10N

EUFFER_OVERFLO

Context: EROADCAST

ulnstruu

Cause
Capsule

emantic error in program: Function uar does not exis
OK

H Scripter Error

Buffer overflow error.

Figure 4

1011 error.

Undefined funct

Figure 3

HIOMIBN (| ||

1 61

MOHH3 WA TO
HOHH3 WA FO
G/bEPEEET ZTIEI0 W1 1B UDTIELS 8Seq 03 ElEp SPUSS [830 (0

07 ‘UDT12oNJ3SU]
1EE109044g ra1nsde;

MO7443A0 9344N4 Pasne]

1568209044 =l A B ulg]

IpEATanad J0dd]

M43 WA -

Ttg anies 1YB1] 21dwes

cZF anieA 3Ys1] =aidwes

£95G anTes IYST] =27dwes

dOMH3 WA

F oasnED ff 1xSIU0T CS1ELS H0MdT SUuTJaIUg A
UNJJAEAD Jat4ng EIE] WA

OQ0T anTes IYSTT atdues

ZET 2nIeA 3YsS1] =21dwes

TeE 2NIEA IYSTT =21dwes

[s B e e B N e B A

dgH sBuimiss sxjewxoog mal, IP3 UOISSES

= 3|osuo} - Adomiap - 23ejdwa jAul) /sddex 1-s0fuil/idof :ueysbuo] uo Aaoue| _U

Figure 5: Buffer overflow message in network window.

uondisag
AueN

Gpues

{(xw

(ABeW

{xbew

Gy

{anEaypa)
(Bunpeas)un

am

[I¥IE]

{Aue ‘el adiba
{12ng) prosng
{fayngreposng
{1ayngjazisq
(aygngingg
{4ayng).reapq
0nqiseiq
(1aynaiserq
QA2

{x|a20e

SUDIOUNY

-

I
ly

O et DT T LD P 00 T OO et O 00T L0D P 00 Oy O et
[R PR e i e e RS Rt Y N I N I R R Y RS B ra

— M LMD e 00

valu]

BIEP H3YNQ

sa|qeLIE) pareys

13661) [
HawiL [
naawil [
wogmy O

200 O

1seapeodg [m]

J3|PURH Wang

3] weiboyg

._; UoISIA) J3|pLey

WABIINE|[Iquing a0y 1dudg Aurg

123duU2s WA SoAuL]

-

ClIE]

Figure 6: Developing environment of TinyScript.

10

Sjlomian

uondunsag
ey

440 MOTT3L 15037
‘440 U334 15037
‘uo pay 15037

7

Opues

{am

gABRWw

{xbew

Qb

(anpe)pa)
{(Buipeas

om

[IFE]

{Aue ‘Aumadiiba
{yngpuesing
{sayngreposng
{sayngiazisq
(apngnnig
{1aynqg) reapq

suonIUNy

CRpaL

valu

sajqeLre paIeys

1366p)
mawl
s O
o0y [w]
o O
weapealg [

A3[pUeY AR

wa) weiboyy

N_ (OTEFETNRETTIIE 1]

WABAIINE|[Iqwiog to) 3dLas Aul]

T440 MOTT2L 15037
T340 Us2dg 5037
T440 pay 15030
T440 mMoTTa) 15037
T340 Uss4g 15037
o pay 5030
T440 mMoTTaL 5037
T 440 Uss4g 15037
T440 PRIy 15037
TF40 MoTTaL 5037
T 440 Uss4g 15037
o pay 5030
T440 mMoTTaL 15037
T340 Uss4g 15037
T340 pPay 15037 -
ra3els BUTITL

T440 MOTTSA 30370
T440 U3sdg 35037
TUb pay 50371
T440 MOTTSA 235037
" 440 ussdg 1gQ3q o
D+ 1 (8Z°6) SHUNYD T BuTpusg
gGgzZ 8ZIS XEuw

00 29 5 rwedBoud Sutpusag

o000 SAdd-ddAAMMMMMMS SN S]

11EY
pat
T goysnd
487 388
50 Swsay3 38s
B1eqs J93diudos pases papeoT
TUOT3EJNSTJUOD papeo)
Yitm Ing 483drdog Butidelg

S0J4N0S [ETJaS-WISs0o) Sutuadp

WTtss0)| 0% pausdo uoTiosuuo]
EWWOD WISSO] 03 SUTIoSuUD]
15501 03 peusdo UOTioauuog
jUSAS WISSO] 0% SUT328UU0]

T440 MOTTSA 2503710
T440 U3sdg 5037

"440 P3d 50371
T440 MOTTSA 235037

[Y B M

T440 Ussdg 350397

Figure 7: Example.

11

	Introduction
	Concepts and Definitions
	TinyScript Programming Language Construct
	Events and Handlers
	Variables and Data Types
	Expression
	Control Structures
	Communication

	Programming Environment

