SwissQM Manual

1 Introduction

SwissQM is a programming interface for wireless sensor network applications. Queries (requests to collect
data from a wireless sensor network) can be composed by users in the graphical interface of SwissQM.
The composed queries are then compiled into programs that are sent to the sensor network where they
are executed.

When you start the test, three windows will be open for you on the desktop, as shown in Figure 1.
Please keep them open during the test. If you close any of these windows by accident, please ask
your proctor to reopen it. In Figure 1, the SwissQM Query GUI window is the graphical user
interface (GUI) of SwissQM, where queries are composed and submitted. The Network window shows
simulation results, including sampled data at each node and data transmission events from node 0 to
the base station. The Base station window shows query execution information and data collected at

the base station. A network composed of four nodes is simulated in this test.

2 Working with the SwissQM Query GUI

The SwissQM Query GUI is used to compose queries, send them to the network, and plot the data
collected at the base station. The GUI is composed of three tabs: the Network tab, the New Query
tab, and the Plot tab. The Plot tab appears only after a query with plot requirement is submitted.

2.1 Network Tab

Figure 2 shows the Network Tab. The left column shows statistical data of communication between
the base station and the sensor network. The right column shows the commands that can be sent to the

network. You won’t need to use the right column in this test, so you can ignore it.

2.2 New Query Tab

Queries are composed in the New Query Tab, as shown in Figure 3. The first field epoch is always
present and cannot be modified. It is used as a coarse timestamp of the data. It counts how many
sampling periods has elapsed since the start of the query. Query fields are added by clicking the New
Field button. A new row is appended to the table when a new field is added. You can edit the attributes
(columns) of the fields to compose a query. A query may contain multiple fields and new queries may

be submitted while others continue to run. Explanations of the fields’ attributes follow.

e Name: Identifier (no whitespaces) of that field. This identifier is shown in the legend of the result
plot. The text can be edited directly.

= lancey on longshan: /optjtinyos-1.x/apps/SwissQM - Network - Konsole

Session Edit View Bookmarks Settings Help

apps/SwissM> L /run
SIM: Random seed is 12860
il
SwissQM Query GUI
Marne Field [Function | Grouping | Flot [Logino DB
epach |epuch | ‘ [vi | (] | ()
E] | Network

/@ lancey on longshan: /home/lancey/downloads

Session Edit Wiew Bookmarks Settings Help

downloads/SwissWM-gateway> ant guerygul
Buildfile: build.xml

querygui:
[javal] looking for UDFs in directo
[javal found 3 potential UDF files
[Javal parsing 'udf/abs.udf’

[javal loaded 1 UDFs Where: | J

[javal parsing 'udf/threshold.udf’

j loaded 1 UDF:

Eg:::% pag:iﬁg ‘udP/:wma.ude‘ | New Field ‘ ‘ Remove Field | sample period: [4 5 Submit

[javal loaded 1 UDFs
[Javal Opening tossim-serial source

[javal Connecting to Tossim event port at localhost:10585
[javal Connection opened to TOSSIM event port

[java] Connecting to Tossim command port at localhost:10584
[javal Connection opened to Tossim command port

[Javal MotelF created

0

E] | Base station

Figure 1: SwissQM programming and simulation environment

e Field: Field expression describes data to be collected. Clicking on the field text box will show a
drop-down list containing data that a sensor node can get. The field text box can be edited to
compose an expression. An expression is composed of operands, operators, and parenthesis. An
operator is one of + (add), - (subtract), * (multiply), and / (divide). An operand can be an item
from the drop-down list or an integer. For example, (light + 100) * 2 is an expression that can be
entered in the field text box.

e Function: Clicking on the Function text field will show a drop-down list containing all built-in
functions. Descriptions of these functions are in Table 1. The selected function is applied to the
Field column. When you select a function by clicking on it, it will be inserted to the Field column.
Aggregation functions such as min and sum apply to field values from nodes in a same group.
Sensor nodes are grouped with Grouping flag, which will be described later. The Function text
box can be directly edited.

e Grouping: Set this flag if you want to divide nodes into groups according to data in the corre-
sponding Field column. Nodes with the same value of the field will be grouped together. Grouping
field cannot be plotted. If no grouping flag is set in a query, but aggregation functions are used,

then the aggregation operations apply to all the nodes in the network.
e Plot: The value of the field will be plotted if it is checked.

e Log into DB: The value of the field will be logged into the database if it is checked. This feature

is disabled in this test; you can ignore it.

Function name Arguments Returned data
variance field variance of field
ewma field exponentially weighted moving-average of field
min field the minimum of field
threshold field, threshold | 1 if the value of field is larger than threshold, otherwise 0
stddev field the standard deviation of field
avg field the average value of field
count the number of nodes in a group
sum field the sum of values of field
mod field, integer remainder of field divided by integer
max field the maximum of field
abs field the absolute value of field

Table 1: Built-in functions.

Optionally, a selection expression that filters nodes can be specified in the Where text field. The
selection expression is composed of a comparison operator with expressions on both sides. Comparison
operators include = (equal), < (less than), > (greater than), <= (less than or equal), >= (greater than
or equal), and <> (not equal).

The sampling period is set in the Sample period field. It is composed of an integer and a time
unit. The following units are supported: ms (milliseconds), s (seconds), min (minutes), and h(hours).

SwissQM only supports sampling periods larger than 1024 ms.

3 An Example

The query shown in Figure 3 retrieves the nodeid and the light sensor readings divided by two from
every node in the network except node 0. When the query is submitted, nodes start sampling light.
You can see this from the Network window shown in Figure 4. The number at the beginning of each
line indicates the node ID, followed by the action on the node. Since only node 0 is connected to the
base station via its UART, the data from the network will be gathered at node 0 and then sent to the
base station through its UART. When you stop the query by clicking the Abort Query button on
the plot tab, the Network window will print “no program found” and the Base station window will
print “stop query”. The value of the plotted fields are displayed in the plot tab as shown in Figure 6.
The x-axis indicates the time, while the y-axis indicates the value. Data from three nodes collected at
the same time are plotted in one vertical line, which makes it hard to locate the point covered by the
line. To avoid this, you can check the grouping flag for nodeid field in the query. In that case, data
from different nodes are plotted on separate lines. You can read the exact values in the Base station

window. Figure 5 shows the returned data in the Base station window. For example, line
[java] timestamp: 46938 epoch:13 2 142

means the data collected at time 46938 ms, which is the 13th period, are 2 and 142. Values of the fields
are printed in the order they are added. Since field nodeid is before light/2 in the query table, the first
number corresponds to nodeid and the second corresponds to light/2. You can check the correctness
by comparing the values in the Base station window and the Network window. For example, during
the last epoch (epoch 13), data returned to the base station are (1, 102), (3, 461), and (2, 142). In the

Network window, you can locate the corresponding epoch. They are the three lines before the first “no

program found”.

1: sample light value 205
3: sample light value 922
2: sample light value 285

The returned values for filed light/2 are the raw light sample data values divided by 2.

£E031 [] €a3an] raan]
€031] €aan | Taan]

@Anpes

MSER

£031 125 sapon 1y []

031

SpuBRLIWIOD -

5510
a0

0

sfa oo
sfio
0

S131UN07) 1953y

Wxewd 1sang ajdn
:paaladal sandq
:paaladal sajdn
IR BIRP 1004
:31ed [eALUE 3jdny
:sadanb uanIuod

SINS1IELS JUdn) -

Yaunz {13 ‘@auans tandwo’ Jo juawpedag

OSSIMS

N9 Aand WbHssIms

Figure 2: SwissQM GUI

SwissQM Query GUI

iiiiiii New Query

Marme Field Function Grouping Plat Laog into DB
epoch epoch ¥ [[
exprl nodeid [[(|
expr2 light /2 (] [¥] [

Where: [nodeid <> 0

| Mew Field || Remove Field | sample period: |4 < Submit

Figure 3: Query for example application.

Z] lancey on longshan: fopt/tinyos-1.x/apps/SwissQM

- Network - Konsole -2

Session Edit View

Bookmarks

Settings

Help

: Mote O
: Mote O
: Mote O
: sample
sample
sample
Mote O
Mote O
Mote O
sample
sample
sample
Mote O
Mote O
Mote O
no program
no progran
no progran
no progran
no progran
I ono program

sends
sends
sends
light
light
light
sends
sends
sends
light
light
light
sends
sends
sends

MMNUWPRPROOOMNWPEOOOMNWERE OO0

data to base
data to base
data to base
value 913
value 219
value 71
data to base
data to base
data to base
value 205
value 922
value 285
data to base
data to base
data to base

fournd
found to be scheduled
found
found to be scheduled
found
found to be scheduled

station
station
station

station
station
station

station
station
station

at
at
at

at
at
at

at
at
at

time
time
time

time
time
time

time
time
time

. 85341475
. 88621950
L93042425

1:51:7.
1:51:7.
1:51:7.

759847900
73488375
31423830

1:51:11.66521225
111 .69446700
111 .72357175

CE]

] Network

Figure 4: Results in the Network window for example application.

/= Jancey on longshan: /home/lancey/downloads/SwissQM-gateway - Base station - Kons E]@ E]

Session Edit View Bookmarks Settings Help

[javal timestamp:27343 epoch:8 1 250 [=]
[javal timestamp:27367 epoch:§ 3 416
[Jawval timestamp:Z7399 epoch:8 Z 180
[javal timestamp:31254 epoch:3 1 Z6
[javal timestamp:31Z80 epoch:9 Z 417
[javal timestamp:31314 epoch:9 3 Z1
[javal timestamp:35155 epoch:10 1 92
[javal timestamp:35181 epoch:10 3 387
[javal timestamp:35215 epoch:10 Z 426
[javal timestamp:38064 epoch:11 1 15
[javal timestamp:39099 epoch:ll Z 467
[javal timestamp:39143 epoch:11l 3 ZE0
[javal timestamp:42969 epoch:1Z 1 456
[javal timestamp:42993 epoch:1Z 3 109
[javal timestamp:43021 epoch:1Z2 Z 35
[javal timestamp:48577 epoch:1l3 1 102
[javal timestamp:4630Z epoch:13 3 461
[javal timestamp:46938 epoch:13 Z 142

[jawal stop guery 3

|| Base station

Figure 5: Results in the Base station window for example application.

QM Query GUI|

Query 3
500 Eexprd

400

300

200

100

0

Abort Query

10s 20s 30s 403

Figure 6: Plot for example application.

	Introduction
	Working with the SwissQM Query GUI
	Network Tab
	New Query Tab

	An Example

