
Enix: A Lightweight Dynamic Operating System for
Tightly Constrained Wireless Sensor Platforms

Yu-Ting Chen
Department of Computer Science

National Tsing Hua University

g9662595@oz.nthu.edu.tw

Ting-Chou Chien
Department of EECS

University of California, Irvine

tchien@uci.edu

Pai H. Chou
Dept. of EECS, UC Irvine and

National Tsing Hua Univ.

phchou@uci.edu

Abstract
Enix is a lightweight dynamic operating system for tightly

constrained platforms for wireless sensor networks (WSN).
Enix provides a cooperative threading model, which is appli-
cable to event-based WSN applications with little run-time
overhead. Virtual memory is supported with the assistance
of the compiler, so that the sensor platforms can execute code
larger than the physical code memory they have. To enable
firmware update for deployed sensor nodes, Enix supports
remote reprogramming. The commonly used library and the
main logical structure are separated; each sensor device has
a copy of the dynamic loading library in the Micro-SD card,
and therefore only the main function and user-defined sub-
routines should be updated through RF. A lightweight, effi-
cient file system named EcoFS is also included in Enix. The
code size and data size of Enix with full-function including
EcoFS are 8 KB and 512 bytes, respectively, enabling Enix
to run on many RF-enabled systems-on-chip that cannot run
most other WSN OSs.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:

Real-time and embedded systems; D.4.7 [Operating Sys-
tems]: Organization and Design

General Terms
Design, Performance

Keywords
Wireless sensor networks, operating systems, file sys-

tem, reprogramming, position-independent code, coopera-
tive threads, scheduling, demand paging.

1 Introduction
The right runtime support can make a great difference

in the amount of effort required to develop applications
for wireless sensor networks (WSN). Many microcontroller

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’10, November 3–5, 2010, Zurich, Switzerland.
Copyright 2010 ACM ...$5.00

units (MCU) with integrated radios (RF-MCU) are commer-
cially available and would be ideal for WSN platforms; un-
fortunately, most of them are not supported by most WSN
operating systems (WSN OS) to date, primarily due to the
tight resource constraint. While it is possible to build many
applications without such an OS, the code tends to be frag-
ile and requires re-inventing the wheel. Our experience with
several real-world applications motivated us to build a new
WSN OS.

1.1 Motivating Application
Our work is motivated by several real-life applications,

one of which is described here. It is a machine-health moni-
toring system for a “stocker,” or a robot arm that moves glass
panels in an LCD factory. The system samples triaxial accel-
eration at several hundred Hz at several points on the stocker
and wirelessly transmits the data to the host PC for analysis.
The robot arm imposes a size constraint on the wireless sen-
sor node, which necessitates the use of integrated RF-MCU
components. It turns out that the overwhelming majority of
such RF-MCUs contain an 8051-compatible core, as shown
in Fig. 1. This is not surprising, given that every 1 out of
5 MCUs is an 8051 [13]. Unfortunately, most WSN OSs
proposed to date are based on either Atmel or TI MSP430,
which add up to less than 1 out of 20, as shown in Table 1,
and only one or two options are available for MSP430 with
an integrated radio (CC430). Although the TinyOS 8051
Working Group has been trying to port TinyOS to the 8051
for years, the latest available version is 0.1 pre-release from
nearly two years ago. On the other hand, several OSs such
as µC/OS-II and FreeRTOS currently run on these platforms,
but they lack features for WSN support. Therefore, a new
WSN OS is sorely needed to take advantage of these RF-
MCUs.

One other consideration is that the robot arms and rails are
all metal structures that create a harsh operating environment
for RF due to reflection. Packet loss is severe, and the prob-
lem is exacerbated by the mobility. To address this problem,
we log data onto a flash memory card for later transmission
or examination. One problem was that a popular open-source
FAT file system was unable to log more than 35 samples per
second in our experience, slower than what we needed by 1-
2 orders of magnitude. Therefore, a specialized, optimized
file system that matches the access pattern of the WSN ap-
plication is needed.

1.2 Requirements
Our WSN platform is targeted mainly to MCUs with a

limited number of general-purpose I/O (GPIO) ports and a
relatively small amount of on-chip code and data memory.
Such platforms typically include on-board sensors to collect
data and exchange data through RF. The MCU contains com-
mon interfaces such as UART, ADC, I2C, and SPI. External
nonvolatile memory such as serial flash and Micro-SD card
can be connected to the sensor device through SPI. In the
following subsections, we list the requirements of our WSN
OS design.
1.2.1 Lightweight and Portability

The OS should be lightweight and portable enough to
run on more resource-constrained wireless sensor platforms.
Low memory and power consumption must be achieved by
utilizing only limited resources in order to increase the life
time of wireless sensor devices. A portable interface and the
reduction of assembly code implementation enable the OS to
be ported to different MCUs.
1.2.2 Programming Model

An appropriate programming model not only facilitates
software development but also promotes good programming
practices. Event-driven programming model is widely used
in WSN but can be unstructured and difficult to use [3]. Con-
sequently, an easy-to-use threading structure that is suitable
for event-based WSN applications with low runtime over-
head is desired. Context switching and scheduling are the
two main sources of run-time overhead of multi-threaded
programming and must be efficient.
1.2.3 Virtual Memory

Virtual memory (VM) can overcome the memory short-
age problem that a resource-constrained wireless sensor plat-
form usually faces. VM on an MCU without hardware MMU
support can be achieved via compiler assistance, where each
function is compiled into a code segment that is then stored
on the Micro-SD card at a specific virtual address. The
segment is loaded on demand while the user program calls
this virtual address at run-time. Memory compaction and
garbage collection must be implemented to solve the exter-
nal fragmentation problem and to recycle unused memory
for future allocation. Users should be able to write programs
without concerns about what the run-time demand segmen-
tation module does, and they should not have to insert addi-
tional tags or face restrictions on function prototypes in the
user programs.
1.2.4 Remote Reprogramming

To enable run-time firmware updates for deployed wire-
less sensor devices, wireless reprogramming is required in
WSN OS design. Dynamic loading must be enabled for par-
tial update instead of whole image update in order to reduce
the time and energy cost due to remote reprogramming.
1.2.5 File System

A lightweight file system supported by the operating sys-
tem is necessary to assist with the access to data storage and
VM. The desired file system is targeted to WSN applications
instead of general-purpose computing. The API provided to
users must be specifically designed and optimized according

to the different access patterns. The file system must be con-
figurable, and therefore only the necessary storage types are
chosen in order to conserve code memory.
1.3 Approach

To meet the requirements listed above, we propose Enix,
a lightweight and dynamic OS with a specialized file system
called EcoFS for tightly constrained WSN platforms. The
most important task for our work is to manage the limited
resources on WSN platforms and to provide a suitable pro-
gramming model for WSN application developers.

Our approach to the programming model is to adopt a
cooperative threading model to enable multi-threaded pro-
gramming while minimizing overhead of context switching
and reducing code size based on a modified setjmp/longjmp
system library. A replaceable scheduler is provided to sup-
port different scheduling policies that meet the requirements
of different WSN applications. The efficiency of the sched-
uler is improved by fast algorithms instead of linear search
for the next running thread; the overhead of context switch
can also be reduced by storing the critical registers on the
internal stack and avoiding using the slow external memory.

One of our approaches to overcoming resource con-
straints is compiler-assisted run-time support for features
such as virtual memory, remote reprogramming and mem-
ory allocation. Compiler assist shifts the complexity to
the resource-unconstrained part such as the host PC. Vir-
tual memory can be achieved without hardware support via
code insertion at compile time. Position-independent code
(PIC) is a suitable approach to achieving dynamic loading;
the compiler can assist with the generation of PIC on the
host PC, thus avoiding the overhead of relocating addresses
at run-time. With the host PC’s help, the run-time overhead
on the wireless sensor nodes can be reduced significantly.

For EcoFS, to achieve efficient file operation and low
power consumption, we support four types of data: binary
code data, preferences of sensor devices, network data such
as routing tables, and sensed data. We minimize the active
time of the Micro-SD card by I/O scheduling and by limiting
the access via the API provided by EcoFS. To reduce code
size, we let the controller inside the Micro-SD card handle
wear leveling (i.e., evenly distributing writes among pages)
and erase-before-write. We also make components in Enix
configurable, and therefore only the required components are
configured and compiled before programming the sensor de-
vices. The code size of our fully functional implementation
of Enix is 8 KB, and the data size is about 512 bytes. By
excluding the unused components of Enix, the code and data
memory consumption can be further reduced.

The rest of this paper is organized as follows. Section
2 discusses related work on WSN OS design. Section 3
presents an overview of Enix and its design concepts. Sec-
tion 4 describes the Enix kernel, including the scheduler,
compiler-assisted virtual memory, dynamic loading, and run-
time reprogramming. Section 5 describes EcoFS and the
chosen storage medium. In Section 6, we evaluate all these
features of Enix, including a comparison of kernel perfor-
mance with µC/OS-II, an embedded OS that supports the
8051 ISA and is widely used in industry for many applica-
tions. Finally, Section 7 concludes this paper with a sum-

Table 1. Market share of Microcontroller ISAs [13]
Co. Core Sh.

Intel 8051 19%
Renesas 740, H8/S,

M32R
17%

Freescale 68XX 15%
PIC PIC 12%
ARM ARM 10%

Co. Core Sh.

NEC V850, 78K0,
K3/K4

9%

ST Proprietary 8-b 6%
Atmel AVR 3%
Infineon C16X 3%
Others Others 6%

8051
MSP430

PIC
AVR

ARM
HCS08

0 5 10 15 20 25 30

802.15.4 Shockburst CC1xxx
BTLE4.0 Z-Wave other UHF

CC1110F{8,16,32}
CC1111F{8,16,32}

nRF{24,9}E1
nRF24L{E,U}1

CC251{0,1}F{8,16,32}
CC2{4,5}30F{32,64,128}

CC2431, MG245{0,5}

Figure 1. Number of RF+MCU options for popular ISAs.

mary of contributions and discusses directions for future re-
search.
2 Related Work

Wireless sensor networks are composed of sensor nodes
and base stations. A sensor node is typically small in physi-
cal size, low cost, small in code and data memory, and lim-
ited in computing capability and battery energy. Table 1 lists
the instruction set architectures (ISA) of the most popular
MCUs. Some real-time operating systems (RTOS) that are
able to run on such a resource-constrained platform include
µC/OS-II [23] and FreeRTOS [31], both of which support
preemptive multi-threading with round-robin or priority-
based schedulers. These RTOSs are indeed lightweight and
well designed, but they are not suited for wireless sensor net-
works due to the lack of support for features such as runtime
code update, power management, and resource control capa-
bilities. In response, researchers have proposed WSN OSs
that provide support specifically for WSN applications. Ta-
ble 2 shows a comparison between existing OSs aimed at
WSNs. However, it seems ironic that most WSN OSs to date
are for either Atmel (3%) and MSP430 (a fraction of 6%
“Others”), leaving the most popular 8051 (19%) and most
other ISAs unsupported. When considering integrated RF-
MCUs, the number of options for the 8051 dominates all
other ISAs combined by 4:1, as shown in Fig. 1.
2.1 Programming Model

TinyOS [25] is a widely used runtime system for WSNs.
It uses a special language called nesC [14] to describe the
software components that form a sensor system with event-
driven semantics. The application code and the runtime li-
brary are then compiled into one monolithic executable. Sev-
eral event-driven runtime-support systems have been devel-
oped for wireless sensor networks and applications with sim-
ilar characteristics, including SOS [17] and Contiki [11].
The processes of these OSs are implemented as event han-
dlers that run to completion without preemption. Therefore,
event handlers in event-driven models may share the same
stack to reserve insufficient memory space. Event-driven
programming is based on cooperative multitasking, which

may be good for tiny, single-processor embedded devices,
but users have to perform stack management manually, and
as a result, the code can become difficult to read and main-
tain. Some WSN OSs provide preemptive multi-threading
[3–5, 11, 15, 20]. Multi-threaded programming models can
be easier to learn compared to event-driven ones, and the
code can be more readable and maintainable. In severely
memory- and power-constrained environments, however, a
multi-threaded model has several disadvantages. For exam-
ple, it occupies a large part of the memory resources, spends
more CPU time and consumes more battery energy due to
context-switching overhead.

Preemptive multi-threading extensions [9] to TinyOS
have been proposed to avoid long-running tasks. Various
concurrency methods has been considered, including pre-
emptive tasks, fibers and virtual machine threads. Later,
TinyOS v2.x incorporated the multi-threading concept in
TOSThreads [20]. They consist of kernel threads and appli-
cation threads. Only application threads can be preempted,
while kernel threads are non-preemptible since they are for
blocking system calls. Kernel threads are activated only
through message passing.

Protothreads [12] allow users to write event-driven pro-
grams in a threading style, with the memory overhead of
two bytes per Protothread. The concept is similar to C co-
routines [21] in that they implement “return and continue”
by using C-switch expansion. Protothreads are limited in
that auto variables or local states cannot be stored across a
blocking wait, and the C-switch implementation may lead
to increased code size in the form of a table lookup and a
jump, which also incur overhead at runtime. The runtime
complexity is proportional to the number of yield points in a
Protothread.

Our Enix OS emphasizes cooperative threading, which
guarantees that no thread will have to yield control unex-
pectedly [16], and Enix threads work similarly to co-routines
but they are implemented in a mix of C and assembly for
smaller code size and better execution efficiency. Swapping
between threads in Enix is a real context-switch operation,
not just a C-switch. It provides automatic stack manage-
ment and incurs little runtime overhead compared to preemp-
tive multi-threading. In addition to cooperative threading,
Enix also supports lightweight preemptive multi-threading
for real-time scheduling. For the power consumed by con-
text switches, it has been shown for MANTIS OS that multi-
threading and energy efficiency need not be mutually exclu-
sive when an effective sleeping mechanism is used to reduce
context-switching overhead [3, 9].
2.2 Runtime OS support for WSN

In real-world wireless sensor networks, the deployed sen-
sor nodes must have the abilities to manage the tasks and
resources at run-time. Run-time reconfiguration and repro-
gramming also become important issues in WSN OS design.
TinyOS, as mentioned before, produces a single image in
which the kernel and applications are statically linked. Thus,
updating code means whole-system image replacement. To
support efficient runtime remote reprogramming for TinyOS,
a virtual machine named Maté [24] has been proposed. Us-
ing Maté or other virtual machines for WSNs [22, 28], code

Table 2. Comparison between WSNs operating systems.
OS Enix TinyOS SOS Contiki MANTIS OS t-kernel RETOS LiteOS Nano-RK
Platform Nordic ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L

nRF24LE1 &MSP430 & MSP430 & MSP430
Programming Thread Event Event Event Thread Thread Thread Thread Thread
Model & Thread
Real-time Support 4 1 4 © © © © © ©
Dual Mode Operation9 © © © © © © ©
Remote Update © 4 © © © © ©
Dynamic Loading © 2 4 © 2 © 3 © 3 © 3

Protection10 4 ©
Virtual Memory © 4 4 © 5

File System © 4 ©
Network Abstraction11 © 4 © ©
Code Size (Bytes) 6 8,138 20,924 8 20,464 3,874 14,000 28,864 20,394 30,822 10,000
Data Size (Bytes) 7 512 597 1536 512 512 512 945 1,633 2,000

1 4 means optional components.
2 achieved using PIC.
3 achieved using runtime relocation.
4 supports code virtual memory only.
5 supports both code and data paging.

6 The code size including the basic kernel and the
© components, excluded4s.

7 lists the smallest data memory required to startup
OS, at least one thread in multi-threaded model.

8 TinyOS code size is compiling from v1.1.15, with

various sensor drivers and a network module, but
excluding storage system and remote programming.

9 means the kernel code is not writable by user code
10 threads are protected from each other’s access
11 OS provides layers of API

can be distributed and configured at run time. The drawbacks
of running a virtual machine on a sensor node include run-
time overhead of the virtual machine interpreter and higher
energy consumption.

SOS [17] is another event-driven OS but consists of dy-
namically loaded modules and a common kernel. The mod-
ules are position independent code (PIC) binaries that imple-
ment specific tasks or functions. This modularized design
is quite flexible, but the interaction between modules may
incur high runtime overhead, and the module must be imple-
mented in a fixed format, which increases the overall code
size on SOS.

Contiki [11], RETOS [5] and LiteOS [4] provide dynamic
loading by runtime relocation, rather than relying on position
independence. The application binary to be combined with
relocation information must be relocated or linked at run-
time [10] before loading into the program memory. Thus, a
sizable data buffer is required in order to relocate in space.

Our Enix OS supports dynamic loading using kernel-
supported PIC, which is easy to port to other platforms. The
dynamic library is pre-linked to the kernel with minor mod-
ification. Hence, our runtime overhead and additional buffer
are reduced compared to the runtime relocation approach.

2.3 Virtual Memory
To fully utilize the memory of a tightly constrained wire-

less sensor platform, some researchers propose software vir-
tual memory on MMU-less embedded systems. One ap-
proach is code modification by either using a compiler or
constructing an additional converter. SNACK-pop [30] pro-
vides a framework for compiler-assisted demand code pag-
ing with static call graph analysis and optimization. The in-
put Executable and Linking Format (ELF) [19] file is ana-
lyzed and translated into an executable image such that every
call/return is modified to call the page manager. Choudhuri
and Givargis [7] showed that data segments have a greater
need to be paged than code segments, and therefore they
propose a data paging scheme with an adjustable page size
based on an application-level virtual memory library and a
virtual memory-aware assembler. The t-kernel [15] is the

first WSN OS that provides virtual memory for both code
and data segments with additional memory protection. Be-
sides software virtual memory approach, MEMMU [2] pro-
poses a new software-based on-line memory expansion tech-
nique [1] that requires no secondary storage. Therefore, it
improves performance and minimizes power consumption
comparing to the above approach. However, MEMMU intro-
duces about 4 KB of code size overhead and requires at least
512 bytes of data memory. Besides dynamic loading, Enix
also supplies software segmented virtual memory by code
modification, and uses a Micro-SD card as secondary stor-
age for the convenience of installing virtual code segments
using a host PC without requiring a specialized programmer.
Enix does not provide virtual memory for data segments be-
cause of the high runtime overhead, but it does support a data
memory allocation scheme to fully utilize the limited data
memory. Furthermore, VM support in Enix consumes only
886 bytes of code memory and 256 bytes of data memory.

2.4 File Systems for WSN
LiteFS, a subsystem of LiteOS [4], provides a hierarchi-

cal, Unix-like file system that supports both directories and
files. General-purpose file systems such as FAT, Ext2 may be
interoperable but may be unsuitable for WSNs due to the rel-
atively large code size and a great deal of data memory space
used to store the hierarchical data structures. A more severe
problem is the poor performance: in our own experience, a
popular FAT file system was able to log at most 35 samples
per second on a Telos-class node. Another issue is that the
general file format becomes insufficient to store WSN data
due to the absence of fast query support.

Some file systems or databases have been customized
for WSNs. ELF [8] uses NOR flash to implement a log-
structured file system. MicroHash [33], TinyDB [26] and
FlashDB [29] use a lightweight index structure or database
that works on wireless sensor nodes. Due to supporting high-
performance indexing and searching capabilities, overhead
of in-memory data structures is inevitable on these systems.

The Coffee file system adopted in ContikiOS is a log-
structured, flash-based file system [32]. Capsule [27] cov-

Figure 2. The block diagram of Enix.

ers the abilities mentioned above. It provides the abstraction
of typed storage objects to applications, including streams,
indexes, stacks, and queues. The composition of different
objects may satisfy various requirements of WSNs. How-
ever, the high capacity parallel NAND flash used by Capsule
makes use of many general-purpose input/output (GPIO)
ports, and therefore it does not work on small-sized MCUs
with few available I/O ports.

3 Overview of Enix
Fig. 2 shows the block diagram of Enix, which currently

runs on a wireless sensor platform called EcoSpire [6]. The
Enix OS contains four major components: runtime kernel,
file system, dynamic loading library, and utility tools. Al-
though the file system is one of the modules in the runtime
kernel, it provides more support for WSN applications. Con-
sequently, we separate the file system as an individual com-
ponent of Enix.

3.1 Runtime Kernel
The first component of Enix is the runtime kernel, which

manages hardware resources and supports run-time recon-
figuration. With a cooperative thread scheduler, develop-
ers can write multi-threaded programs instead of being lim-
ited to single-threaded programming. A wireless code image
update manager and a dynamic loader are also included to
enable remote reprogramming, so that the deployed sensor
nodes can be easily updated over RF.

3.2 File System
EcoFS, the file system of Enix, is a configurable and

lightweight storage system using a Micro-SD card or an
MMC card as the storage medium. Generic file abstraction
may not be well suited for WSNs. We realized that only
few types of data need to be saved, and we divide EcoFS
according to the different usage patterns: code data, pref-
erences, network data, and sensed data. The code data
block stores the binary code segments that can be loaded
efficiently by the runtime loader into the code memory on
demand. The preferences are the key-value pairs for stor-
ing the node’s status and settings. The requirement of pref-
erences is fast searching with modifications enabled. Be-
cause of the limited data memory and the wish to provide a
simple network abstraction, the routing table may be main-
tained in EcoFS. Network data such as routing tables or the
roles of the adjacent nodes must be enumerable and may be
changeable if the network topology is dynamic. Last but
not least, the sensing data block is used for logging col-
lected data in harsh environments when real-time transmis-

sion is not viable. This append-only storage type must be
fast, power-efficient, and reliable to meet the requirements
of high-sampling-rate WSN applications.
3.3 Dynamic Loading Library

The third component of Enix is the dynamic loading li-
brary called ELIB. ELIB is a special library that is pre-
processed by the host PC tools. Most of the commonly
used library functions are collected and transformed into seg-
ments that comprise ELIB. Each segment corresponds to the
position-independent code of a function with a unique vir-
tual address, namely where the segment is located in the sec-
ondary storage. Due to the constrained memory resource of
compact wireless sensor devices and the high energy con-
sumption of the RF transceiver, making use of ELIB enables
software virtual memory and reduces the transmission size
of runtime reprogramming. A full ELIB library now takes
28K (12KB without standard C library).
3.4 Utility Tools

The last part of Enix is the host PC’s utility tools, in-
cluding a wireless reprogramming and debugging shell, a
file system parser shell, complier and linker. With the host
PC’s assistance, heavier computation and compiling tasks
can be done on the host PC to reduce the runtime overhead
on tightly constrained nodes. Rather than processing delayed
linking at run-time as ELF does, the ELIB building tool con-
structs a position-independent library at link-time. There-
fore, the run-time loading burden on the MCU of these com-
pact sensor nodes is reduced significantly, and no additional
code is required. Another tool is the file system shell, called
the EcoFS Shell, which provides an interactive environment
for users to manipulate specially formatted data of EcoFS
simply and conveniently. This assistance saves the user from
wasting time on troublesome tasks such as reading, modify-
ing, and writing secondary storage devices directly.
3.5 Code Size

The non-swappable part of the system takes around 8KB
of compiled code, including the thread scheduler, low-level
drivers for SD and RF, file system driver, remote program-
ming, the main function, and some basic library needed
by above objects. Other utility library code can be saved
in ELIB on the SD card and are loaded on-demand. A
detail breakdown for Enix compiled code is as follows:

Enix Scheduler 1023
Enix Storage and RF driver 1696
EcoFS 2316
Remote reprogramming 660
Essential C library 1130

+) User logical structure 203
Total 7028 bytes

4 Runtime Components in Enix
This section describes the kernel components in Enix.

They are the cooperative threads with the run-time sched-
uler, compiler-assisted virtual memory, and dynamic loading
and runtime reprogramming support.
4.1 Cooperative Threads and Scheduler

The cooperative threading model has the characteristic
that a context switch occurs only when the current running
thread calls a yield or sleep function. Thus, the overhead of

context switching and stack usage are lower than that of pre-
emptive multi-threading and is more appropriate for tightly
constrained wireless sensor platforms. Here, we describe
an efficient way to implement cooperative threads with low
context-switching overhead and that consumes little code
and data memory. In addition, two popular scheduling poli-
cies, namely priority-based and round-robin, are also pre-
sented to provide the adaptive abilities of Enix for supporting
different WSN applications.
4.1.1 Multi-points Setjmp/Longjmp

The system calls setjmp and longjmp are commonly used
for jumping between subroutines. To achieve the inter-
subroutines jump, the setjmp function stores the program
counter and stack pointer into a jump buffer. When longjmp
function is called from another subroutine, the data in the
jump buffer is restored, and then the program returns to the
previous setjmp point. It is worth mentioning that the used
registers are pushed on the stack before the setjmp function
is called, and therefore the local variables can also be re-
stored after setjmp. However, this approach does not support
jumping forward or backward between multiple functions as
required by coroutines. First, it provides a single-direction
jump only from the longjmp point to setjmp point accord-
ing to the jump buffer; second, stack overwriting happens
while the previous setjmp point calls the cascaded function
that may modify the stack data of later setjmp points.

To achieve cooperative threading, the ideas of setjmp and
longjmp are taken. Each never-returned subroutine repre-
sents a cooperative thread, which has its own stack and con-
text buffer for storing critical data. A cooperative thread may
yield at any specific point to invoke the scheduler and resume
another cooperative thread. Each yielding call automatically
pushes the local variables on the stack and records the pro-
gram counter and stack pointer in the context buffer. The re-
suming process simply restores the saved data from the con-
text buffer and the stack. As long as the context-switching
point is determinable, only necessary data will be stored on
the stack. Therefore, the per-thread stack does not require
much memory and is adaptive to the number of threads. The
maximum number of cooperative threads is seven in the cur-
rent implementation of Enix. This approach to cooperative
threads allows subroutines to suspend and resume execution
at specific locations without being concerned with stack and
thread states. Moreover, semaphores and functions such as
yield, sleep, suspend and resume are also provided to enable
thread control. These primitives are intended for users fa-
miliar with threads programming and their implications. For
more advanced applications where the execution time may
be data dependent, such as compression algorithms, proper
selection of the yield points will be important, or else the
system may prevent other threads from execution and de-
crease system reliability. One standard solution is to use
timer watchdogs to regain control from misbehaving threads;
another is to enable preemptive multi-threading support.

Fig. 3 shows a sample application written in the cooper-
ative threading model in Enix. This application is to sense
triaxial acceleration and then wirelessly transmit the sensed
data to a receiver with ID 1234. There are three cooperative
threads in this program: thread0 first initializes the hardware

modules and global variables and then blinks the LED peri-
odically; thread1 senses the data while the sensor is ready
and the previous sensed data has already been transmitted;
thread2 transmits the sensed data to the remote sensor node
and then clears the global flag to enable the next sensing task
in thread1. The main function adds the threads to the Enix
kernel and then calls enix_kernel_start to invoke the sched-
uler, which never returns to main().
4.1.2 Priority-Based and Round-Robin Schedulers

Enix provides two scheduling policies: priority-based
scheduler and round-robin scheduler to determine the next
thread to run based on the thread’s priority or registration
sequence, respectively. The scheduling policy in Enix is re-
placeable to provide flexibility for development of WSN ap-
plications.

The list of runnable threads is represented as an array of
bitmaps to enable quickly finding the next runnable thread.
The thread with priority n is runnable only if the nth bit in the
bitmap is set; thus, by checking the bitmap, the next running
thread can be found. For the priority-based scheduler, the
first set bit in the bitmap indicates the next running thread.
More powerful ISAs such as ARM support instructions for
finding the first set bit in a 32-bit word. Simpler ISAs such
as 8051, AVR, or MSP430 do not support such powerful in-
structions. So, we use a table-lookup implementation. The
number of threads is limited by the size of the bitmap.

Algorithm 1 shows the pseudo code for finding the
highest-priority runnable thread by table lookup, where
nextPrioTbl is a byte array with 16 elements, each of which
indicates the index of the first set bit in the corresponding el-
ement of the array, and rdylst is a bitmap list. Each bit repre-
sents a cooperative thread with a different priority. By look-
ing up the index of the first set bit, the next running thread
can be found as shown in the algorithm.

To implement a round-robin scheduler, we propose an-
other efficient table-lookup algorithm (Algorithm 2). By ro-
tating the rdylist to the right for currentPrio+1 bits and look-
ing up the table, which is the same as Algorithm 1, the next
running thread can be easily found. These two algorithms
consume additional 16 bytes of code memory for the im-
mutable table but reduce the total code size and improve the
performance significantly, as will be shown in Section 6.

Algorithm 1 Fast algorithm to get the next running thread
(Priority-Based).

if nextPrioTbl[rdylst & 0x0F] 6= 4 then
return nextPrioTbl[rdylst & 0x0F]

else
return 4 + nextPrioTbl[rdylst >> 4]

end if

4.2 Compiler-Assisted Virtual Memory
Virtual memory is widely used in OSs to support a larger

memory space than provided by the physical memory. In this
section, we describe the implementation details of compiler-
assisted virtual memory in Enix.
4.2.1 Demand Segmentation

Virtual memory is achieved in Enix via demand segmen-
tation without any hardware support. The code memory

extern xdata char* malloc_ptr_1;
extern unsigned char gb;
//thread 0 control LED and init everything
ENIX_THREAD(thread0) {

EA = RF = 1; //init RF
//init 3-axes
epl_acc_init(ACC_8G_SCALE,

ACC_DATA_RATE_100HZ);
//malloc 3 bytes
malloc_ptr_1 = (xdata signed char *)

eco_kernel_mem_req(3);
gb = 0; //init flag
while(1) {

LED0 ^= 1;
LED1 ^= 1;
enix_kernel_thread_sleep(10);

}
ENIX_THREAD_END();

}

//thread 1 sensed data from 3 axes
ENIX_THREAD(thread1) {

while(1) {
if (gb || !epl_acc_data_is_ready())

break;

malloc_ptr_1[0] = epl_acc_read_X();
malloc_ptr_1[1] = epl_acc_read_Y();
malloc_ptr_1[2] = epl_acc_read_Z();
gb = 1; //set flag
enix_kernel_thread_sleep(1);

}
ENIX_THREAD_END();

}

//thread 2 transmit sensed data
ENIX_THREAD(thread2) {

pdata unsigned char *packet;
packet = enix_kernel_get_tx_buf();
enix_kernel_rf_start_tx(1234);

while (1) {
if (gb) {

packet[0] = malloc_ptr_1[0];
packet[1] = malloc_ptr_1[1];

packet[2] = malloc_ptr_1[2];
enix_kernel_rf_send();
gb = 0; //clear flag

}
enix_kernel_thread_sleep(1);

}
ENIX_THREAD_END();

}

int main() {
LED0 = LED1 = OFF;
//add thread
enix_kernel_add_thread(0, ENIX_DEFAULT_INIT,

thread0, LOW_POWER_ON);
enix_kernel_add_thread(1, ENIX_DEFAULT_INIT,

thread1, LOW_POWER_OFF);
enix_kernel_add_thread(3, ENIX_DEFAULT_INIT,

thread3, LOW_POWER_OFF);
//run kernel, never return
enix_kernel_set_timer_period(0);
enix_kernel_start();
return 0;

}

Figure 3. An example Enix WSN application code: Sense and Transmit.

Algorithm 2 Fast algorithm to get next running thread
(Round-Robin).

if rdylst = 0 then
return 7

end if
t← RIGHTROTATE(rdylst,(currentPrio+1))
r← bitmap_lookup(t)� pass t as rdylist to Algorithm 1
x← r + currentPrio + 1
if x > 7 then

return x−8
else

return x
end if

of the wireless sensor platform is divided into swappable
and non-swappable areas. The Enix kernel and the user-
defined logical structures such as the main function are non-
swappable. The swappable area utilizes the rest of code
memory managed by the virtual memory manager of Enix.

To reduce the runtime overhead in Enix, a library called
ELIB is proposed. ELIB consists of binary code segments
that are preprocessed on the host PC and is pre-installed on
the Micro-SD card, the secondary storage medium natively
supported in Enix. Each segment in ELIB represents the bi-
nary code of a function in a position-independent way. That
is, a unique virtual address is assigned to each code segment
to indicate its location in the Micro-SD card. Calls to ELIB
functions from the user program will be translated at com-
pile time into calls to a special run-time loader routine in
Enix kernel using a technique called source code refinement,
to be described in the next section. Therefore, the demanded
segments will be loaded into code memory and executed at
run-time. The current memory allocation scheme in Enix is
first-fit.

It takes three passes to construct ELIB. In the first
pass, the common functions are collected into a file named
ELIB.LIB, which is passed to the library parser to get the bi-
nary code size of each function; and then a virtual-address
allocator is called to allocate a unique virtual address to each
function. The second pass is code modification: a library
function may call another library function that does not exist

in code memory, and therefore such code must be modified.
The purpose of code modification is to translate ELIB func-
tions to run-time position-independent code. When the code
modification is done, the ELIB is compiled and linked to cre-
ate the file named ELIB.HEX, the hex image that consists of the
HEX representation of ELIB functions. The final pass splits
ELIB.HEX into separated HEX files, each of which is called a
code segment, that is, the HEX representation of a function.
Next, the EcoFS installer program installs the code segments
onto the Micro-SD card according to their virtual addresses.
The procedure above can be done automatically by a shell
script. After this procedure, the Micro-SD card is available
for loading and executing.

4.2.2 Memory Compaction and Garbage Collection
All virtual-memory systems have the common problem

of fragmentation. External fragmentation occurs when
the remaining free memory blocks are not consecutive.
Since the dynamic loading library ELIB is runtime position-
independent, fragmentation can be solved by memory com-
paction. A garbage collector routine executes periodically to
observe the memory usage and compact memory if neces-
sary.

Another problem arises when the garbage collector re-
claims those segments that will be executed after the return
of the current running segment. This is called the cascaded
call problem: it occurs when the code memory is out of use,
and the caller is garbage-collected while the callee is execut-
ing, such that the callee returns to the caller that has been
evicted, thereby causing the system to crash. There are some
solutions to fix the cascaded call problem. For example, ad-
ditional checking code can be inserted before callee returns,
and thus the absent caller would be reloaded back before it
is returned to. Enix solves this problem by restricting the
garbage collector to only non-swappable code.

4.3 Dynamic Loading and Run-time Repro-
gramming

Run-time reprogramming and dynamic loading are im-
portant issues in WSN OS design. Deployed sensor nodes
need remote reprogrammability for the purpose of bug fix-
ing and firmware updating. Enix supports run-time repro-

gramming and dynamic loading, and user programs can be
updated through RF.
4.3.1 Run-time Position-Independent Code

To achieve fast runtime loading, Enix uses Position-
Independent Code (PIC). Traditional PIC is machine depen-
dent, and thus not every architecture supports PIC. We pro-
pose an efficient way to generate PIC code without hardware
support. With the assistance of run-time kernel via code
modification, the code becomes position-independent at run-
time. This modification is also applied to the function seg-
ments in ELIB as mentioned before. Fig. 4 shows the code
modification details in Enix. Three types of code are position
dependent in general Enix user programs.

First, kernel calls in the user program do not have to be
modified, due to the separation between the kernel and user
programs. The linker redirects these kernel calls to the ap-
propriate addresses by a linker script as shown in Fig. 4(a).

The second type of position-independent code covers the
library calls as shown in Fig. 4(b). We redirect this kind of
absolute calls to the special kernel function via code modifi-
cation. The kernel function finds the address of target func-
tion at run-time and then jumps there. If the target does not
exist, then the loader is invoked to do the same work as men-
tioned in the virtual memory section.

The last type is for local absolute jumps, as shown in Fig.
4(c). In most cases, local jumps are relative jumps except for
those jumping from the beginning of a large logical structure
to the end. We convert a long jump instruction into a rel-
ative jump routine by calculating the relative size from the
source to the target at compile time, get the current program
counter at run-time, and then add the program counter and
the relative size to get the target address at run-time.

In addition, Fig. 4(d) also shows two key functions
in the Enix kernel to support run-time PIC. The function
enix_getpc gets the program counter at run-time and stores it
into the DPH1:DPL1 register pair (an alternative pair of the
Data Pointer High/Low registers in the 8051 ISA). Since the
lcall instruction will push the return address onto the stack,
we can call enix_getpc to read the program counter from
the stack. enix_fake is another kernel function that checks
the existence of the target function and redirects the lcall in-
struction to the target function address at runtime. If the tar-
get function does not exist in the code memory, then it will
be loaded from the Micro-SD card according to the virtual
address passed into enix_fake function.
4.3.2 Source Code Refinement

In order to hide the details of the run-time loader from the
flow of user program development and to reduce the amount
of code modifications, a source code refinement technique
is applied. Fig. 5(a) shows a simple Enix user application
sending a string of data through UART. For the include files
of Enix user program, the function definitions are removed,
and C macros are applied as shown in the Fig. 5(a). By using
macros and varargs.h support for the C language, each li-
brary function call in the user program is redirected to a spe-
cial function named enix_fake. This vararg-style function
allows variable numbers and types of parameters, and there-
fore every function prototype can work with this refinement
with additional type casting. Furthermore, the source code

(a) Kernel Call (unchanged)

enix_fs_get_pref("LPOW") ⇒ enix_fs_get_pref("LPOW")

(b) Library Call: mapped enix_fake

epl_uart_putchar(’a’) ⇒ enix_fake(0x1220,(uint8_t)’a’)

(c) Local LJMP: converted to relative jump

__asm
ljmp __300107

__endasm;
⇒

__asm
lcall _enix_kernel_rd_getpc
mov DPTR,#(__300107 - .)
mov A, _DPL1
clr C
add A, DPL
mov DPL, A

mov A, _DPH1
addc A, DPH
mov DPH, A
clr A
jmp @A+DPTR

__endasm;

(d) Enix Kernel: support routines

void enix_getpc() {
__asm
mov A, R0
mov R0, SP
mov _DPH1, @R0
dec R0
mov _DPL1, @R0
mov R0, A
ret

__endasm;
}

uint16_t enix_fake(
unsigned int addr,...){
__asm
clr _EA
push _ALL
; get virtual addr
mov R0, _SPX
dec R0
movx A, @R0
mov DPH, A
dec R0
movx A, @R0

mov DPL, A
mov _SPX, R0
lcall _enix_rd_cr
; restore XSP
inc _SPX
inc _SPX
POP _ALL
setb _EA
ret

__endasm;
}

Figure 4. (a)-(c): Transformation and (d) support for po-
sition independent code.

refinement technique can be used to achieve system configu-
ration. For example, a general library function SendPacket
can be called by the user program to send a byte buffer
through different interfaces, such as RF, UART, I2C and SPI.
It is easy to provide a configuration interface for users to
choose the transmission interface of SendPacket library func-
tion by using the source code refinement technique. Hence,
different hardware modules of wireless sensor devices can
be easily configured.

5 EcoFS: The File System
A lightweight and efficient storage system is essential

to ultra-compact sensor nodes that must log all sensed data
for later analysis or asynchronous transmission. Nonvolatile
storage is also important for recording node state and time
stamps of events, especially since power depletion may oc-
cur unpredictably on a deployed sensor node. Although the
developer can write drivers to directly control the nonvolatile
storage, doing so is tedious, error prone, and unstructured. A
more structured approach is to build a simple file system ab-
straction on top of the raw storage device. We propose a file
system named EcoFS as a component in Enix.

5.1 Storage Medium in WSN
In recent years, flash memory has been widely used in em-

bedded systems and handheld devices. The characteristics
of flash memory include non-volatility, small size, low cost,
low power consumption, and shock resistance. In fact, flash
memory can be found on many popular wireless sensor plat-
forms either on-board or as an expansion module. For exam-
ple, our experimental platform EcoSpire can have an external
Micro-SD card module connected via SPI. A Micro-SD card
is functionally identical to a regular SD (Secure Digital) card

User Program

extern xdata char* malloc_ptr_1;
int main() {

LED0 = LED1 = OFF;
epl_uart_init(UART_BAUD_57K6);
epl_uart_putstr("test uart\n");
return 0;

}

Source Code Refinement

extern xdata char* malloc_ptr_1;
#define _EPL_UART_PUTSINT 11776 //size:145
#define _EPL_UART_PUTSTR 14336 //size:110
#define _EPL_UART_INIT 14848 //size:95

#define epl_uart_init(a) \
enix_fake(_EPL_UART_INIT, \
(unsigned char)a)

#define epl_uart_putchar(a) \
enix_fake(_EPL_UART_PUTCHAR,\

(unsigned char)a)
#define epl_uart_putstr(a) \

enix_fake(_EPL_UART_PUTSTR, \
(unsigned char*)a)

(a) Source code refinement.

C Source
file

Compiler

Kernel
Bridge
Library

Fake functions
with empty body
implementation

Compile stage

Object file

Linker
Kernel
Bridge
Library

Relocated kernel
function address

Link stage

HEX file
(linked w/

kernel)

(b) Bridge library.

Figure 5. Bridge library and Enix user programs.

but in a reduced form factor.
An SD card contains a controller that handles wear lev-

eling, auto-erasing, and error correcting codes (ECC) recov-
ering. SD/MMC cards can be controlled through a serial in-
terface (SPI). Although SD cards consume more energy than
raw flash components, their simple interface, small physical
size, low cost and high capacity characteristics make them
suitable for wireless embedded devices. Furthermore, the
removable characteristic enables SD cards to be removed
from deployed sensor nodes for later analysis instead of
transmitting the logged data back through UART, USB, or
RF. Considering the advantages mentioned above, we chose
SD/MMC as the storage medium for EcoFS.
5.2 Host Side vs. Host Side EcoFS

The implementation of EcoFS consists of two main parts:
node side and host side. The part on the host side is con-
trolled using the EcoFS Shell. Due to the resource limi-
tations, the node side focuses on how to efficiently access
EcoFS data. On the other hand, the host side provides com-
plete functionalities of EcoFS, including list, read, write,
modify, and binary to HEX translation. There is no severe
restriction on the host PC. Fig. 6 shows the block diagrams
of EcoFS for both the node side and host side.
5.2.1 Node Side

For the wireless sensor node implementation shown in
Fig. 6(a), an SD/MMC driver is built according to the Se-
cure Digital Card specification that uses SPI protocol to ac-
cess the memory card for basic I/O operations. An EcoFS li-
brary is provided in order to recognize specialized data types
of EcoFS, namely code data, preferences, sensed data, and
network data. The EcoFS Library is configurable: only de-
manded ones are configured and installed on the wireless
sensor nodes. Some reference applications commonly used
in WSN such as logging sensed data, booting from an SD
card, periodically refreshing the node status, and accessing
the routing table in multi-hop wireless networks can all be
achieved easily by using EcoFS.

Applications

Status
Operation

Boot from
SD Card

Data
Logging

Packet
Routing

EcoFS Library

Code Data Preferences

Sensed
Data

Network
Data

API

SD/MMC Card Driver

Memory Card
SPI

EcoFS Shell

ls cd cp

cat

mkfs

sync

install

graph

clean

API

EcoFS Parser

Data Block Parser

Super Block Parser

Memory Card

USB
Card Reader

(a) EcoFS: Node Side

Applications

Status
Operation

Boot from
SD Card

Data
Logging

Packet
Routing

EcoFS Library

Code Data Preferences

Sensed
Data

Network
Data

API

SD/MMC Card Driver

Memory Card
SPI

EcoFS Shell

ls cd cp

cat

mkfs

sync

install

graph

clean

API

EcoFS Parser

Data Block Parser

Super Block Parser

Memory Card

USB
Card Reader

(b) EcoFS: Host Side

Figure 6. The block diagrams of EcoFS.

5.2.2 Host Side
After the data has been logged on the SD Card, it is rela-

tively easy to access the SD card via a USB card reader on a
host PC as shown in Fig. 6(b). To extract EcoFS-formatted
data, an EcoFS Parser is required. The raw data read from
the card are processed by the parser that converts them into
the appropriate file format to be accessed by users.

The top layer of EcoFS host-side implementation is
EcoFS Shell. The interactive shell environment provides
general Unix-like commands such as ls, cd, cp, and cat so
that users can list the files for each type and see the content of
files. There are also special commands, for example, mkfs to
format an SD card, clean to eliminate all files, and install
to modify and add files to EcoFS. Moreover, the command
graph can be used to analyze sensed data and plot charts.

To demonstrate the convenient shell environment of
EcoFS host side implementation, Fig. 7 shows the snapshots
of EcoFS Shell. The users can easily manipulate the EcoFS
files by plugging the Micro-SD card into a card reader via
the assistance of EcoFS Shell on the host PC. The collected
data by the sensors can be analyzed easily as shown in Fig. 7.
In addition, all EcoFS-formatted data, including binary code
segments, can be accessed with ease through EcoFS Shell.
5.3 Data Types in EcoFS

As mentioned in Section 3, each data item in EcoFS is ei-
ther fixed length or wrapped by special tags as used in a reg-
ular TCP/IP packet format and has a special length field to
indicate the size of the item. Therefore, the parsing process
can be done without consuming large data memory by us-
ing load-partial-then-parse scheme. In the following subsec-
tions, we describe the detailed format of EcoFS data types.
5.3.1 Code Data

The purpose of code data is to support virtual memory
for code in Enix. By using the EcoFS Shell, the dynamic
loading library ELIB can be pre-installed on the Micro-SD
card for later loading. Each code segment has a unique vir-
tual address, which is the location of the code segment on
the Micro-SD card. The segment format starts from a spe-
cial BEG(0xAE) tag followed by a two-byte field indicating

the binary segment size; after the size field, the binary data
bytes with a pre-defined size follow. When a node wants to
retrieve the segment by its virtual address from the Micro-SD
card, it first checks for the BEG tag; then it reads two bytes
to get the data size and allocate suitable code memory space;
finally, the code segment is loaded from the Micro-SD card
into the code memory. The current design of the code data
block does not allow modification of the code segment by
the sensor node itself, though a later version of EcoFS will
enable replacement of binary segments at run-time.
5.3.2 Preferences

To provide a fast query data structure of EcoFS, we added
the preference data type. Each preference item is repre-
sented with 22 bytes, including 1 byte BEG(0xEA) tag, 1
byte TYPE tag that indicates the datatype of the value field
such as character, integer, or string, following by the 10-byte
key string and the 10-byte value with a type tag.

To prevent high data memory consumption and to support
modification of data, each preference item is distributed into
a 512-byte SD card sector. The characteristic of preference
is to support fast searching and additional modifying ability.
As a result, a hashing scheme is applied. When the specific
value of a key is required, first the key is passed to a simple
hash function to generates an integer. Second, the integer
is added to an offset to get the sector number, the location
of preference item. Finally, the value is retrieved. For the
keys with same hash value, we allocate five slots to store the
collision preferences; the next linked preference is located
just adjacent to the current located sector. There is also a
super block for data of preference type, which is the bitmap
used to check whether the target hash value exists or not.
Thus, the string-comparison time is reduced for non-existent
preference keys.
5.3.3 Sensed Data

The sensed data is appended only when changing the “al-
ready sensed data” is unnecessary and the modification of
flash memory results in high overhead. Some of the WSN
sensing tasks collect sensed data when specific events have
happened. For this reason, begin and end tags are added
to enclose sensed data to keep events separated. There is
also a timestamp field in sensed data format, so that the later
analysis can calculate the event-trigger time using the data
retrieved from this field. To fill the timestamp field, either
Enix system timer or user application granted time can be
used. Besides, if the Micro-SD card is full, then the decision
to overwrite or stop depends on the preference setting.
5.3.4 Network Data

EcoFS network data are used to store network-related
information such as packet routes, neighbor sensor nodes’
states, and the WSN topology. The fields can be customized
by user applications. Each network data item is represented
by fixed 32-byte data, including 2 bytes of network ID and 30
bytes of a user-defined structure such as the type, state, and
remaining power of sensor node, depending on the require-
ments of the WSN applications. A bitmap is maintained in
the super block for the purpose of quickly enumerating ex-
isting items in the EcoFS network data area. The current
version of EcoFS supports at most 65536 IDs, which con-

Figure 7. EcoFS host PC shell environment with built-in
data analysis and data viewers.

Figure 8. (a) EcoSpire node: 23× 50 mm2; (b) EcoSpire
simple node, 13×20 mm2.

sumes 8192 bytes. Even though a sensor node reads 8192
bytes of result in about 12 ms, this mechanism consumes
only 32 bytes of data memory, which is more beneficial espe-
cially for constrained wireless sensor platforms. For exam-
ple, we provide a sample WSN application called “receive
and forward,” which receives an RF packet, enumerates all
the neighbor nodes’ ID, and forwards the packet in sequence.

6 Evaluation and Results
This section shows the efficiency of Enix as a lightweight

dynamic WSN OS. We first describe our experimental setup,
including our hardware platform and software tools. Second,
we compare the context switch overhead and the code and
data memory footprints of different multi-threaded scheduler
implementations to show that the cooperative threads model
of Enix has the lowest overhead. We also compare the power
consumption of loading code segments over RF and Micro-
SD cards. We evaluate our code updating scheme against
other methods to show that we reduce runtime overhead sig-
nificantly in terms of the size of the uploaded code.
6.1 Experimental Setup

This section describes the hardware platform and soft-
ware tools for Enix.
6.1.1 Sensor Platform

EcoSpire [6] is our experimental platform. As shown in
Fig. 8, EcoSpire refers to the larger version for prototyping
and application development, and a compact version called
the “simple node” is more suitable for field deployment.
This platform consists of an MCU with an integrated RF

(a) Current sensor. (b) Battery fuel gauge.

Figure 9. Power measurement modules.

Table 3. Context switch overhead comparison between
algorithms for selecting the next running thread. Unit:
µs.

RR Priority-Based
Conventional Linear Check 48.925 55.2
Our Fast Table Lookup 16.325 11.9

transceiver, a chip antenna, a triaxial accelerometer, power
circuitry, and an expansion interface. The MCU core runs
at 16 MHz by default and comes with 16KB program flash
and 1KB data RAM. EcoSpire’s nRF24LE1 RF-MCU con-
tains an on-chip radio that implements the Enhanced Shock-
Burst protocol, which is the core of the newly finalized Blue-
tooth 4.0 Low Energy Technology standard. A 32-Mbit on-
board flash memory and Micro-SD expansion capability are
included for nonvolatile data storage. This configuration is
actually quite representative of many integrated RF-MCUs
made by TI (CC2430, CC2510) and Z-Wave ones, all with
integrated 8051 cores, and they comprise well over 90% of
the RF-MCUs on the market. Most WSN OS cannot fit into
this limited platform and are thus not easily comparable.

To measure the energy consumption of Enix, we devel-
oped two power measurement modules as shown in Fig. 9.
One is the current sensor module for measuring the instan-
taneous current of another EcoSpire in execution. The other
module is the battery fuel gauge, which allows EcoSpire to
measure the power and battery capacity itself at run-time.
6.1.2 Software Tools

The software for EcoSpire includes an IDE and graphi-
cal user interface tools (GUI) on the host computer, system
software on the sensor node and the base station, and util-
ity tools for image uploading and RF debugging. We built
our IDE with Eclipse by creating a plugin for EcoSpire de-
velopment. With this plugin, we provide a fully GUI-based
programming environment. This lowers the burden for pro-
grammers to memorize commands and enables them to focus
on the software development process, from editing, compil-
ing, and linking to firmware programming.
6.2 Context Switch Overhead of Different

Schedulers
To evaluate the context-switch overhead of our coopera-

tive threads in Enix, we implement both round-robin (RR)
and priority-based schedulers with different algorithms that
may affect the context-switching time.

Table 3 shows the results of using our fast table-lookup
algorithms versus straightforward linear search to find the
next running thread from the runnable queue. We measure
the execution time by taking the average of 60,000 context

Table 4. Context switch overhead comparison between
different scheduler implementation. Unit: µs.

RR Priority-Based
C-Coroutines 16.325 11.9
ASM-Coroutines 8.25 8.475
Preemptive 13.45 23.3

Table 5. Context switch overhead comparison between
Enix and µC/OS-II by averaging 60,000 context switches.

OS Enix µC/OS-II
policy Coop.-th. Preemp.-th. default
Overhead (µs) 8.47 23.3 250

switches. It is clear to observe that our fast algorithms sig-
nificantly improve both RR and priority-based schedulers by
cutting the execution times down to a quarter of the original
linear search implementation.

Table 4 shows a comparison of context-switch overhead
between different multi-threaded models for both RR and
priority-based scheduler. Preemptive multi-threading has
the highest context-switch overhead due to the unpredictable
preemption time, and therefore all of the registers must be
saved and restored during context switch. We implement C-
coroutines using C-switch statements and add the priority-
based and RR schedulers to it. C-coroutines and coopera-
tive threads have the feature that context switching occurs
only when the running thread calls yield or sleep functions,
and thus they have lower context-switch overhead. The im-
plementation of C-coroutines uses C-switch statements, and
this means that every context switch results in several com-
parisons of variables and an absolute jump. Consequently,
a context switch of cooperative threads is simply a replace-
ment of the program counter, stack pointer, and some global
variables, and thus it has the lowest overhead.

To compare Enix with a real-world OS, we ported µC/OS-
II to EcoSpire. It is widely used in industry, whereas no
other WSN OSs are known to run on the 8051. Table 5 com-
pares the context-switch overhead of µC/OS-II and our work.
The reason why µC/OS-II has high context-switch overhead
is that it uses external memory to store both the per-thread
stack and registers, thus incurring great overhead from many
external memory movements.

Table 6 shows a comparison of the code and data mem-
ory usage between different scheduler implementations. The
preemptive ones consume the most memory for the same rea-
son mentioned before. Other scheduler implementations re-
quire about 1KB of code memory, which is frugal compared
to other regular RTOSs such as µC/OS-II and FreeRTOS, as
shown in Table 7.

Table 6. Code and data size comparison between differ-
ent scheduler implementation. Unit: bytes

Model C-Coroutines Cooperative Preemptive
Scheduler RR Prio. RR Prio. RR Prio.
Code Size 918 897 1140 1051 1688 1559
Data Size 79 79 70 69 97 91

Table 7. Code and data size comparison between Enix,
FreeRTOS and µC/OS-II. Unit: bytes

Enix(Scheduler) FreeRTOS µC/OS-II
Code Size 918 7560 10294
Data Size 79 719 488

Table 8. I/O speed comparison between flash chips.
Units: Kbytes/s.

SST25 SST25 Pm25 SanDisk
VF512A VF032B LV020 MicroSD

Sequential read 170.7 170.7 176.6 170.66
Sequential write 46.5 71.1 54.8 92.75
Random read 46.4 39.4 43 2.18
Random write 20.9 23.1 17.3 0.11

6.3 Virtual Memory and EcoFS
This section shows the speed and power consumption of

SD cards and other serial flash memories on EcoSpire. The
results confirm the reason that the Micro-SD card was chosen
for the main nonvolatile storage, as discussed in Section 5.

Tables 8 and 9 compare the speed and power consumption
of a Micro-SD card with three other different on-board serial
flash memories. These flash memories and the Micro-SD
card are connected to EcoSpire through a common SPI bus.
The SD card has fast sequential read and sequential write
properties but poor random access speed due to the charac-
teristics of NAND flash memory used by the SD card. Most
of the routines in EcoFS use sequential reads and sequential
writes such as code data and sensed data. For the other pref-
erences types and network data, their access unit is a sector,
and therefore the access time is equivalent to sequential ac-
cess. Thus, the slow random access speed does not affect
EcoFS. For the power consumption, the on-card controller
of the SD card causes the highest power consumption among
all flash memories. In fact, the data shown in Table 9 is the
active power consumption of the SD card, that is, when the
chip-select (CS) signal is asserted. When CS is de-asserted,
the power consumption of the SD card is low. Accordingly,
the appropriate usage of the SD card may reduce the total en-
ergy cost of sensor nodes. EcoFS is designed such that once
the SD card is selected by CS, it will finish the I/O operations
as soon as possible.

Fig. 10 shows the time and energy cost of the sensor
node performing 1MB of sequential read with different block
sizes. Due to the requirement of a start command before each
sequential read and sequential write operation, the highest
performance and lowest energy cost happen while the max-
imum block size of 512 bytes is applied. EcoFS tries to
use the largest possible block size and reduce the number
of random-access operations in order to overcome the power
and speed bottlenecks of the SD card. Owing to the different
approaches by SD card manufacturers, we have tried seven
2GB SD cards made by different manufacturers. We mea-
sure the speed and power consumption of sequential read and
sequential write operations shown in Table 10. This compar-
ison enables the user to make price/performance trade-offs.

We also evaluated the delay and energy of the virtual
memory. They are 6.328ms / KB and 505.2µJ / KB, respec-
tively.

Table 9. The energy consumption comparison between
different flash chips. unit: mJ.

SST25 SST25 Pm25 SanDisk
VF512A VF032B LV020 MicroSD

Energy Write 1MB 397.866 501.564 481.404 976.794
Energy Read 1MB 146.454 103.656 85.638 517.314

100 200 300 400 500 600
Number of Bytes Read for Each Read Command

0

1000

2000

3000

4000

5000

6000

T
im

e
 o

f
S

e
q

u
e
n

c
ia

l
R

e
a
d

 1
 M

B
 B

y
te

s
 (

s
)

0

2000

4000

6000

8000

10000

12000

P
o
w

e
r

o
f

S
e
q

u
e
n

c
ia

l
R

e
a
d

 1
 M

B
 B

y
te

s
 (

m
J)

Differenct Access Size While Reading Micro SD Card

Time
Power

Figure 10. SD card reading using different block lengths.

6.4 Efficiency of Enix Code Update Scheme
The key concept of Enix is the separation of user-defined

logical structures and commonly used library functions. By
storing the dynamic loading library ELIB on the Micro-SD
card, only the user-defined logical structures need to be re-
motely programmed through the RF. Hence, the number of
RF packets for run-time reprogramming is reduced.

We develop five WSN applications compiled with and
without Enix. The first three applications are general WSN
tasks:
(1) sense and transmit data to the base station through RF,

(2) sense and log data onto the Micro-SD card,

(3) receive and forward packets to other sensor nodes
through RF.

(4) EcoNet Transmit, and

(5) EcoNet Receive.
EcoNet is a simple multi-hop network composed of several
EcoSpire sensor nodes. The unique ID and the adjacent
nodes are all recorded on the Micro-SD card of each sen-
sor node. Every sensor node can invoke the EcoFS API to
enumerate its adjacent sensor nodes. The fourth application,
EcoNet Transmit, collects the sensor data with a random
number and transmits them to the neighboring sensor nodes
by enumerating the network data block of EcoFS. The last

Table 10. SD card comparison between manufacturers.
Speed (KB/s) Power Consumption (mW)

Seq. Read Seq. Write Seq. Read Seq. Write
Toshiba 170.7 51.2 133.9 82.8
Kingston 170.7 37.9 145.5 76.7
SanDisk 170.7 92.8 81.4 86.2
TOPRAM 113.8 51.2 150.1 121
Team 73.1 73.1 105.9 108
Silicon Power 128 53.9 154 118.8
Transcend 93.1 92.8 98.2 117.8

Table 11. Runtime reprogramming code size with/with-
out Enix. Unit: bytes.

application Sensing & Sensing RF Tx EcoNet EcoNet
binary size RF Tx & Log & RF Rx Tx Rx
no OS 4825 2903 7646 8233 7770
on Enix 474 673 514 1027 442

Table 12. Update code size using VCDIFF delta compres-
sion. Units: bytes

Xdelta -9 Sens.& Sens. RF Tx EcoNet EcoNet
RF Tx &Log & Rx Tx Rx

Sensing&RF Tx X 3148 2834 2663 2810
Sensing&Log 2920 X 1937 1921 1936
RF Tx & Rx 4509 4730 X 3168 3226
EcoNet Tx 4927 5201 3760 X 3847
EcoNet Rx 4523 4753 3246 3291 X

application EcoNet Receive receives the sensed data from
neighboring sensor nodes and checks the duplication of ran-
dom numbers of sequential RF packets, and forwards the
valid packets to the base station.

Table 11 compares the uploaded image sizes of the above
five WSN applications with and without Enix. The WSN ap-
plications without any OS support have binary image sizes
larger than 6KB on average. Due to the large code size of the
RF library, only the second application has a code size less
than 3KB. By comparing the same applications that use Enix
as the OS, the sizes of the program images to be transmit-
ted through RF are reduced significantly. These applications
produce 500 bytes of binary image on average except for the
fourth application, EcoNet Transmit, which generates ran-
dom numbers without calling any kernel or ELIB functions,
and therefore it produces about 1KB of program image.

Most of the run-time reprogramming schemes use the
VCDIFF tool to generate the patch between two binary code
images, and the patch will be applied by the sensor node.
Table 12 shows the results from running VCDIFF for each
of the two different WSN applications mentioned above. Al-
though the average binary image size is reduced to 4KB, it is
still larger than the applications written on top of Enix.

Table 13 compares the energy cost of 1MB data transfer
with an SD card and over RF. As the table shows, reliable
RF transmission and reception consumes the highest energy.
Thus, for code swapping purposes, it is more energy efficient
to swap code from an SD card on demand than to swap over
RF. In short, by applying Enix as the operating system, sen-
sor nodes can save energy and time while becoming capable
of efficient remote reprogramming due to the reduced binary
image size.

7 Conclusions
Enix makes five contributions in the WSN OS area. First,

the cooperative threads programming model enhances the

Table 13. The energy consumption comparison between
SD card and RF (Full Speed). Units: mJ.

Reliable RF RF SD Card
Read/Rx 1MB 1540 1306 517
Write/Tx 1MB 1342 450 977

performance by decreasing context-switch overhead, mak-
ing it two times faster than the traditional preemptive multi-
threaded programming model. This cooperative threading
model is easy to learn compared to the event-driven model.
Moreover, the local states can be saved and restored auto-
matically during context switches without burdening the pro-
grammer with manual state saving in some other program-
ming models. Second, Enix provides code virtual memory
to overcome the shortage of on-chip code memory via host-
assisted demand segmentation, which most WSN OSs do not
support. To achieve virtual memory, the ELIB is built on the
host PC composed of PIC segments and is loaded to code
memory on-demand by the run-time loader of Enix. Third,
remote reprogramming is also available in Enix. Due to the
pre-stored ELIB on the Micro-SD card, the size of the binary
image of the user program to be wirelessly updated is re-
duced significantly during the remote reprogramming stage.
Fourth, Enix provides a specialized file system called EcoFS
that is divided into four configurable parts including code
data, preferences, network data, and sensed data, according
to the different usage patterns. Besides, a shell for the host
PC is also provided to control EcoFS-formatted SD cards,
including listing, reading, writing, and modification, thus re-
ducing the difficulty and complexity to access EcoFS for-
matted data. Finally, the code and data footprints of Enix
with full-function including EcoFS are at most 8KB and 512
bytes, respectively, which are the smallest compared to other
WSN OSs. Only ten percent of code is machine-dependent,
while the rest is written in C language, and thus it is easy to
port to other wireless sensor platforms.

Practically speaking, the fact that it runs on a modest-
sized 8051 MCU means that Enix is expected to be easily
portable to many other integrated RF-MCUs, most of which
contain an 8051-compatible core. Thus, Enix is opening up
a whole class of cost-effective, miniature, compelling RF-
MCUs previously unsupported by WSN OSs. For future
work, we are enhancing the shell for interactive execution by
adapting a version of EcoExec [18]. We are also further re-
ducing context switch overhead by considering ideas such as
Lazy threads. To encourage community involvement in fea-
ture enhancements and porting Enix to more platforms, we
made Enix open source. It can be freely downloaded from
http://enix.sourceforge.net/.
Acknowledgments

This work was sponsored in part by the National Science
Foundation CAREER Grant CNS-0448668, CNS-0721926,
the National Science Council (Taiwan) Grant NSC 96-2218-
E-007-009, and Ministry of Economy (Taiwan) Grant 96-
EC-17-A-04-S1-044. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.
8 References
[1] BAI, L. S., YANG, L., AND DICK, R. P. Automated compile-time

and run-time techniques to increase usable memory in MMU-less em-
bedded systems. In CASES ’06: Proceedings of the 2006 interna-
tional conference on Compilers, architecture and synthesis for em-
bedded systems (New York, NY, USA, 2006), ACM, pp. 125–135.

[2] BAI, L. S., YANG, L., AND DICK, R. P. MEMMU: Memory expan-
sion for MMU-less embedded systems. ACM Trans. Embed. Comput.
Syst. 8, 3 (2009), 1–33.

http://enix.sourceforge.net/

[3] BHATTI, S., CARLSON, J., DAI, H., DENG, J., ROSE, J., SHETH,
A., SHUCKER, B., GRUENWALD, C., TORGERSON, A., AND HAN,
R. Mantis os: an embedded multithreaded operating system for wire-
less micro sensor platforms. Mob. Netw. Appl. 10, 4 (2005), 563–579.

[4] CAO, Q., ABDELZAHER, T., STANKOVIC, J., AND HE, T. The
LiteOS operating system: Towards Unix-Like abstractions for wire-
less sensor networks. In IPSN ’08 (Washington, DC, USA, 2008),
IEEE Computer Society, pp. 233–244.

[5] CHA, H., CHOI, S., JUNG, I., KIM, H., SHIN, H., YOO, J., AND
YOON, C. RETOS: resilient, expandable, and threaded operating sys-
tem for wireless sensor networks. In IPSN ’07 (New York, NY, USA,
2007), ACM, pp. 148–157.

[6] CHEN, C., CHEN, Y., TU, Y., YANG, S., AND CHOU, P. EcoSpire:
an application development kit for an Ultra-Compact wireless sensing
system. Embedded Systems Letters, IEEE 1, 3 (2009), 65–68.

[7] CHOUDHURI, S., AND GIVARGIS, T. Software virtual memory man-
agement for MMU-less embedded systems. Tech. rep., Center for
Embedded Computer Systems, University of California, Irvine, Nov
2005.

[8] DAI, H., NEUFELD, M., AND HAN, R. ELF: an efficient log-
structured flash file system for micro sensor nodes. In SenSys ’04
(New York, NY, USA, 2004), ACM, pp. 176–187.

[9] DUFFY, C., ROEDIG, U., HERBERT, J., AND SREENAN, C. J.
Adding preemption to TinyOS. In EmNets ’07: Proceedings of the
4th workshop on Embedded networked sensors (New York, NY, USA,
2007), ACM, pp. 88–92.

[10] DUNKELS, A., FINNE, N., ERIKSSON, J., AND VOIGT, T. Run-
time dynamic linking for reprogramming wireless sensor networks.
In SenSys ’06 (New York, NY, USA, 2006), ACM, pp. 15–28.

[11] DUNKELS, A., GRONVALL, B., AND VOIGT, T. Contiki - a
lightweight and flexible operating system for tiny networked sensors.
In LCN ’04: Proceedings of the 29th Annual IEEE International Con-
ference on Local Computer Networks (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 455–462.

[12] DUNKELS, A., SCHMIDT, O., VOIGT, T., AND ALI, M. Pro-
tothreads: simplifying event-driven programming of memory-
constrained embedded systems. In SenSys ’06 (New York, NY, USA,
2006), ACM, pp. 29–42.

[13] EMITT SOLUTIONS. Microcontroller market and technology analy-
sis report – 2008, 2008.

[14] GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E.,
AND CULLER, D. The nesC language: A holistic approach to net-
worked embedded systems. SIGPLAN Not. 38, 5 (2003), 1–11.

[15] GU, L., AND STANKOVIC, J. A. t-kernel: providing reliable os sup-
port to wireless sensor networks. In SenSys ’06 (New York, NY, USA,
2006), ACM, pp. 1–14.

[16] GUSTAFSSON, A. Threads without the pain. Queue 3, 9 (2005), 34–
41.

[17] HAN, C.-C., KUMAR, R., SHEA, R., KOHLER, E., AND SRIVAS-
TAVA, M. A dynamic operating system for sensor nodes. In MobiSys
’05 (New York, NY, USA, 2005), ACM, pp. 163–176.

[18] HSUEH, C.-H., TU, Y.-H., LI, Y.-C., AND CHOU, P. H. EcoExec:

An interactive execution framework for ultra compact wireless sen-
sor nodes. In SECON 2010 (Boston, MA, USA, June 21-25 2010),
pp. 190–198.

[19] INTEL. Portable Formats Specification, Version 1.1.

[20] KLUES, K., LIANG, C.-J. M., PAEK, J., MUSĂLOIU-E, R., LEVIS,
P., TERZIS, A., AND GOVINDAN, R. TOSThreads: thread-safe and
non-invasive preemption in TinyOS. In SenSys ’09 (New York, NY,
USA, 2009), ACM, pp. 127–140.

[21] KNUTH, D. Fundamental Algorithms, Third Edition. Addison-
Wesley, 1997, ch. Section 1.4.2: Coroutines, pp. 193–200.

[22] KOSHY, J., AND PANDEY, R. VMSTAR: synthesizing scalable run-
time environments for sensor networks. In SenSys ’05 (New York, NY,
USA, 2005), ACM, pp. 243–254.

[23] LABROSSE, J. J. MicroC/OS-II, The Real-Time Kernel 2ND EDI-
TION. CMP Books, 2002.

[24] LEVIS, P., AND CULLER, D. Maté: a tiny virtual machine for sen-
sor networks. In ASPLOS-X: Proceedings of the 10th international
conference on Architectural support for programming languages and
operating systems (New York, NY, USA, 2002), ACM, pp. 85–95.

[25] LEVIS, P., MADDEN, S., POLASTRE, J., SZEWCZYK, R., WHITE-
HOUSE, K., WOO, A., GAY, D., HILL, J., WELSH, M., BREWER,
E., AND CULLER, D. TinyOS: An operating system for sensor net-
works. Ambient Intelligence (2005), 115–148.

[26] MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND
HONG, W. TinyDB: an acquisitional query processing system for
sensor networks. ACM Trans. Database Syst. 30, 1 (2005), 122–173.

[27] MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY, P.
Capsule: an energy-optimized object storage system for memory-
constrained sensor devices. In SenSys ’06 (New York, NY, USA,
2006), ACM, pp. 195–208.

[28] MÜLLER, R., ALONSO, G., AND KOSSMANN, D. A virtual machine
for sensor networks. In EuroSys ’07: Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007
(New York, NY, USA, 2007), ACM, pp. 145–158.

[29] NATH, S., AND KANSAL, A. FlashDB: dynamic self-tuning database
for NAND flash. In IPSN ’07 (New York, NY, USA, 2007), ACM,
pp. 410–419.

[30] PARK, C., LIM, J., KWON, K., LEE, J., AND MIN, S. L. Compiler-
assisted demand paging for embedded systems with flash memory. In
EMSOFT ’04 (New York, NY, USA, 2004), ACM, pp. 114–124.

[31] REAL TIME ENGINEERS, LTD. FreeRTOS: Free, portable, open
source, royalty free, mini real time kernel. http://www.freertos.org/,
2010.

[32] TSIFTES, N., DUNKELS, A., HE, Z., AND VOIGT, T. Enabling
large-scale storage in sensor networks with the coffee file system.
In IPSN’09 (Washington, DC, USA, 2009), IEEE Computer Society,
pp. 349–360.

[33] ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI, V., GUNOPU-
LOS, D., AND NAJJAR, W. A. Microhash: an efficient index struc-
ture for fash-based sensor devices. In FAST’05: Proceedings of the 4th
conference on USENIX Conference on File and Storage Technologies
(Berkeley, CA, USA, 2005), USENIX Association, pp. 3–3.

http://www.freertos.org/

	Introduction
	Motivating Application
	Requirements
	Lightweight and Portability
	Programming Model
	Virtual Memory
	Remote Reprogramming
	File System

	Approach

	Related Work
	Programming Model
	Runtime OS support for WSN
	Virtual Memory
	File Systems for WSN

	Overview of Enix
	Runtime Kernel
	File System
	Dynamic Loading Library
	Utility Tools
	Code Size

	Runtime Components in Enix
	Cooperative Threads and Scheduler
	Multi-points Setjmp/Longjmp
	Priority-Based and Round-Robin Schedulers

	Compiler-Assisted Virtual Memory
	Demand Segmentation
	Memory Compaction and Garbage Collection

	Dynamic Loading and Run-time Reprogramming
	Run-time Position-Independent Code
	Source Code Refinement

	EcoFS: The File System
	Storage Medium in WSN
	Host Side vs. Host Side EcoFS
	Node Side
	Host Side

	Data Types in EcoFS
	Code Data
	Preferences
	Sensed Data
	Network Data

	Evaluation and Results
	Experimental Setup
	Sensor Platform
	Software Tools

	Context Switch Overhead of Different Schedulers
	Virtual Memory and EcoFS
	Efficiency of Enix Code Update Scheme

	Conclusions
	References

