
EcoExec: An Interactive Execution Framework for
Ultra Compact Wireless Sensor Nodes

Chih-Hsiang Hsueh, Yi-Hsuan Tu,Yen-Chiu Li
1National Tsing Hua University

Hsinchu City, Taiwan 30013

Pai H. Chou1,2

2University of California
Irvine, CA 92697-2625 USA

Abstract—EcoExec is a host-assisted interactive execution en-
vironment for wireless sensing systems. Users can interact with
sensor nodes by viewing attributes and invoking functions via
a command-line interface. Functions that are not resident in
the node’s firmware are automatically compiled on the host,
packaged up and downloaded to the node, linked, and executed,
all seamlessly and transparently to the user. By packaging
these features in a dynamically object-oriented programming
environment such as Python, EcoExec enables programmers to
experiment with features of the wireless sensor nodes and to
rapidly develop application software. Most importantly, EcoExec
empowers resource-constrained wireless sensor platforms with
rich functionalities that would otherwise be prohibitive, thanks
to its host-assisted execution feature with code swapping over the
network. Experimental results on actual wireless sensor platforms
show EcoExec to perform effectively with negligible observed
overhead to the user.

I. INTRODUCTION

Wireless sensor networks (WSNs) have emerged in recent
years as a new enabler for a variety of applications. It is
often envisioned that wireless sensor nodes would be small
and deployed in large numbers everywhere. To make such a
vision come true, the sensor nodes are necessarily resource-
constrained in terms of data and code memory, power con-
sumption, and processing capabilities. However, it is chal-
lenging to program such resource-constrained systems, and
it is even more challenging to make such systems adaptive,
evolvable, and interactive. Being able to remotely monitor
and interact with sensor node programs is another feature
that would be useful to programmers. With this feature,
programmers can experiment with new functionality or debug
code after the systems have been deployed.

To address these problems, this paper introduces EcoExec,
a framework that provides an interactive environment for
wireless sensor nodes. Traditionally, to have interactivity, the
sensor node would run a command-line interpreter (“shell”),
which would be either high overhead but general, or low
overhead but restricted to a fixed, small set of commands.
The distinguishing feature of EcoExec is that the shell runs
on the host side, and interactivity is achieved through dynamic
loading and invocation of code on the sensor node on demand.
Moreover, EcoExec represents sensor nodes as objects for pro-
grammers to interact with the nodes in a high-level, dynamic
language such as Python. EcoExec partitions the functionality
such that only the necessary mechanisms are implemented on
the resource-constrained sensor nodes, while all other features

1 >> n = Node(0) # instantiate a node at address 0
2 >> n.T # print attribute interactively on next line
3 100
4 >> n.T = 200 # set attribute T of n interactively
5 >> n.T
6 200
7 >> n.blink_LED(10)
8 >> n.sample_adc()
9 240

10 >>

Fig. 1. Example of an interactive line session, where >> is the prompt.

are implemented on either the host computer or base station.
We believe that such a highly interactive execution framework
can boost the productivity of WSN developers.

A. Illustrative Example

Fig. 1 illustrates the interactive programming with an exam-
ple. Each wireless sensor node is represented as an instance
of EcoExec’s Node class in the Python language. It contains
node-specific information such as network address, memory
layout, etc. Variables and functions on the node are represented
as attributes of the Node object in Python on the host, and
accessing these attributes will have the effect of remotely
manipulating them on the physical node at runtime.

Every node instance is declared with the statement
“var_name = Node(id)”, where var_name is a variable that rep-
resents the newly created node instance, and id is the node’s
network address. One can call a function on a sensor node by
calling the corresponding method in the node’s representative
object in Python.

B. Problem Statement

The problem is to design a host-assisted runtime system to
support interactive execution of commands, by dynamically
downloading code to the sensor node if necessary.

1) Requirements and Assumptions: EcoExec is divided
into two parts: the host-side shell and the node-side runtime
support. A host is a general-purpose computer that provides a
command-line interface to the nodes. A host is assumed to be
resource-rich with plenty of storage and processing speed. It is
also assumed to have been installed with a cross compiler for
the nodes and maintains a database that tracks the firmware
versions for the nodes.



A node is a wireless sensing system that is connected to the
host via a wireless communication interface. Specifically, we
target platforms that are highly resource-constrained, so that
they can be made ultra compact and low cost. By resource-
constrained, we mean that it has approximately 4KB RAM
total for both data and code.

If the user issues a command whose code is not in the
node’s firmware, then the host sends (“pushes”) the code to
the node. In fact, EcoExec goes beyond demand code paging
by compiling, linking, and possibly optimizing first before
transmission if necessary, and then invokes the function. All
these steps should happen transparently to the user. Because
the host is several orders of magnitude more powerful than the
node and the code is relatively small, all these steps should
take a negligible amount of time. It is meant to make resource-
constrained platforms appear much more capable than those
that are statically programmed.

A requirement for remote programming is that it should
use reliable communication. A wireless transmission medium
is susceptible to outside interference, and packet loss is
inevitable. Due to the fact that reliable transmission is not
necessarily supported by the underlying hardware, reliability
has to be guaranteed with protocol support.

2) Objectives: As EcoExec targets highly resource-
constrained sensor nodes, our first objective is to minimize
the memory footprint of the subsystem that runs on the
sensor node. Our second objective is to shorten the response
time of commands. The third objective is to minimize radio
communication due to sending code. Minimizing energy usage
is also considered, but it is not one of the primary objectives
in this study.

Memory is one of the most expensive parts of integrated
components such as microcontroller units (MCUs). SRAM can
easily occupy over half of the chip, and leakage becomes a
major problem as the feature size decreases. Flash memory
may take less area but is by no means free. Although MCUs
with 128 KB of integrated flash are available, their chip area
is significantly larger and can cost an order of magnitude
more than those with less than a dozen kilobytes of flash.
Our objective is to minimize the amount of both data and
program memory on the node as required by both the runtime
system and the application code. We assume most functions for
sensing and local processing to be “reasonably sized,” where
the working set of the program can fit within the physical
memory of the MCU, so that thrashing will not be a problem
in practice.

The response time here refers to the round-trip time from
when the user issues the command on the host to the time the
host displays the result sent by the node after it has executed
the command. In this study, we assume homogeneous code
images on nodes is reachable within a single hop. We assume
the host to be a modern personal computer with gigabytes
of RAM and can compile code for MCUs with a negligible
amount of delay. The potential bottleneck is in either the radio
frequency (RF) interface or the MCU. The latency objective
can therefore be paraphrased in terms of minimizing the

overhead of the runtime support and minimizing the amount
of RF communication due to EcoExec.

The third objective is to minimize the amount of RF com-
munication due to transferring code to the node, by choosing
a good code replacement policy. Similar to virtual memory,
EcoExec needs to dynamically bring in new code from the
host to the node from time to time, by replacing some resident
code if necessary.

C. Outline of Paper

The rest of this paper is organized as follows. Section II
discusses related works on remote reprogramming. Section III
gives an overview of EcoExec. We divide the solution into
node side (Section IV) and host side (Section V). Section VI
presents experimental results, and Section VII concludes this
paper with directions for future work.

II. RELATED WORK

A. Dynamic Reprogramming and Linking

Run-time systems for wireless sensor platforms were ini-
tially concerned primarily with providing a good abstraction
while minimizing overhead [1], [2]. Soon, researchers realized
the importance of in-field reprogramming over wireless links
and proposed remote firmware update schemes for single hop
[3] and multi-hop [4]–[6] topologies. However, full image
replacement may be wasteful in terms of transmission and
update costs, and researchers propose partial update techniques
that can be divided into incremental transmission and linking.
Transmission cost can be reduced by sending only the differ-
ence computed by diff [7], [8], block-level difference [9], or
Rsync [10]. Once the difference is received, the firmware is
patched [11]. As an alternative to program image replacement,
the runtime system may support loadable modules whose
references are resolved either at compile time [12] or when
the module is loaded [13]–[15] by a memory relocation
mechanism. However, these systems may be dynamic but they
are not interactive.

B. Interactive Programming

An interactive system is one that prompts the user for
commands at run time and reports results back to the user
instantly if possible. It enables users to test out the behavior
of the system incrementally by invoking various functions with
parameter values of their choice and confirm their understand-
ing. This represents a much more efficient alternative to the
traditional edit-compile-link-program-reset-run cycle, which is
not very forgiving if the user makes just one mistake and
has no way of getting control back without reset. Interactive
systems can also be scripted as a higher-level way of pro-
gramming.

For these reasons, several interactive programming systems
have been proposed for wireless sensor platforms. SensorWare
[16] allows users to program the nodes using the Tcl [17]
scripting language, whose syntax resembles that of many com-
mand line shells. However, even after subsetting, the resulting
Tcl interpreter still requires a 32-bit MCU and several hundred



TABLE I
COMPARISON OF DYNAMIC REPROGRAMMING AND LINKING

TECHNIQUES.

Work Sensor platform Data size Program size Runtime support
Hill [1] ATMEL 90LS8535 226B 3.4KB TinyOS
Bhatti [2] MANTIS nymph 500B 14KB MANTIS OS
Stathopoulos [4] Mica2 700B 4.5KB moap
Hui [6] Mica2 84B 128KB deluge
Reijers [7] EYES 2KB 60KB diff-based edit script
Koshy [8] Mica2 4KB 128KB Remote linking producing deltas
Jeong [9] Mica2 4KB 128KB Rsync algorithm diff
Dunkels [12], [13] ESB platform > 230B 3.8KB Contiki
Cha [14] H-mote > 724B > 20KB RETOS
Han [15] Mica2 1KB 20KB SOS
EcoExec Eco 256B 4KB Script-assisted dynamic loading

Fig. 2. System overview.

kilobytes of memory to run. LiteOS [18] presents a Unix-like
abstraction for WSN by providing a command line interface
to sensor nodes, which are mapped to files in directories that
correspond to their network hierarchies. LiteOS shell can also
support interactive commands and debugging features, but it
requires the entire modified application program to be re-
linked and replaced. BerthaOS running on the PushPin wire-
less sensor nodes can handle Pfrags [19], which are fixed-sized
(2KB) program fragments that can be dynamically loaded
and executed to achieve interactivity. However, the host-side
interface appears more limited. The smallest footprint of all is
Tapper [20], which supports a customized, synthesized parser
for the chosen set of commands and can run with 1KB of
RAM. However, its command set is fixed and would require
full image replacement to update.

The approach taken by EcoExec is two folds. First, we
generalize the dynamic loading of program fragments (as in
BerthaOS) by involving a compiler in the loop on demand.
Second, we extend the host-assisted execution (as in Tapper
and LiteOS) by packaging the concepts in a dynamic object-
oriented language such as Python, which can be used either
interactively or in batch mode. Sensor nodes are accessed as
method calls to objects, which abstract away not only commu-
nication and networking details but also compiler, linker, and
loader invocations when the required binary is not resident in
the firmware. This scheme enables ultra compact, resource-
constrained nodes to be equally capable to those systems with
several orders of magnitude more resources.

III. SYSTEM OVERVIEW

Fig. 2 shows an overview of EcoExec. It is composed
of two subsystems: the host and the wireless sensor nodes.
Each host computer is connected to a base station and issues
commands to wireless sensor nodes. The Host subsystem pro-
vides functionality for management and control of the wireless
sensor network. EcoExec provides a command line interface

Fig. 3. EcoExec execution flow.

(CLI) named ExShell for users to administer the whole system.
Programmers can also group multiple commands into a script
file to be executed in batch. The base station relays messages
between the host PC and the nodes. The Node subsystem
executes a main loop while listening to incoming packets
for potential commands. Commands include not only those
issued by the users but also reprogramming ones automatically
inserted by EcoExec in order to properly load and execute the
desired code.

Communication between the Host and the Node subsystems
is done through the base station. We assume that the com-
munication protocol is reliable, and this can be achieved by
having the sender wait for an acknowledgment or retransmit
otherwise.

The execution flow of EcoExec is depicted in Fig. 3. From
initialization of the system to receiving of node responses for
a command, the sequence of operations is as follows.

1) Initialization (host and node): The host queries the
database to load information about each node’s program
structure, network configuration, and memory layout. Each
node boots up.

2) Command Input (host): The user types a command into
ExShell on the host, or the interpreter executes a step in the
batch file.

3) Command Processing (host): ExShell checks if the
invoked function is resident in the target node. If so, then
the shell looks up the function definition and location and
sends a command to the node. Otherwise, the shell invokes
the incremental linker on the new function to produce a new
binary image that is diff’ed with the previous image. It then
sends both the diff script followed by a command to invoke
the corresponding actions on the node.

4) Message Issuing (host): The host transmits the message
to the base station via Ethernet. The base station translates
each packet into RF packets and transmits them to the target
node. The host retransmits if it does not receive an acknowl-
edgment from the node.

5) Message Decoding (node): The Node subsystem de-
codes RF packets and executes the corresponding actions, if
the packet is not a duplicate.



Fig. 4. RF packet format.

6) Code Installation (node): If the message indicates a
store operation, then the binary data in the RF packet is written
directly into the designated memory location.

7) Function Execution (node): If the message indicates
function execution, then the Node subsystem invokes the
desired function as an active message. The function’s return
value, if any, is sent to the host as part of the reply message
payload.

8) Result Display (host, optional step): If the action above
has a return value, then the Host subsystem parses the payload
of the RF packet and shows the result in the user interface
(ExShell).

IV. NODE SUBSYSTEM

We demonstrate the feasibility of EcoExec on a wireless
sensor platform called Eco, which contains an integrated
MCU+RF chip and a triaxial accelerometer. The rest of this
paper assumes the 8051 instruction set architecture (ISA),
although the concept of EcoExec can also be implemented
on many other networked embedded systems platforms of
different ISAs. The Node subsystem sits on top of a layer
of device drivers. Among them, the drivers for the serial
peripheral interface (SPI), EEPROM, and RF transceiver are
the essential drivers that must be included before deployment.
Drivers for other devices such as UART, analog-to-digital
converter (ADC), or SD card interface are not installed until
they are needed. Overall, the Node subsystem supports remote
function execution and remote reprogramming in terms of two
main components: store and execute. The execute component
calls functions as commanded, while the store component
stores received data at the designated memory location. Each
component consists of a set of handler functions. For example,
a get handler returns memory content and can be remotely
invoked by the Host subsystem for dumping memory content.

A. Message Formats

Due to the constraint imposed by our chosen RF hardware,
each message is encapsulated in the 23-byte payload of an RF
packet that starts with a 1-byte preamble and a 3-byte address
field, followed by the packet payload (message) and a 2-byte
CRC field, as shown in Fig. 4. The two categories of messages
are ordinary messages and executable messages.

1) Ordinary Messages: An ordinary message is handled
by a designated handler with the whole message as its input.
When an ordinary message is received, the Node subsystem
parses the message and acts accordingly. EcoExec uses ordi-
nary messages to update the program memory or install new
functions by copying binaries to a specific memory location.

Fig. 5. Example of an executable message to call function foo(10).

2) Executable Messages: An executable message is an
extension of an active message [21], which contains the pointer
to the handling function along with the parameter values. It is
a fast way to dispatch packets, because no separate parsing is
necessary before deciding how to handle them, and it is much
lower overhead than using a switch/case statement to decide
which function to invoke. An executable message does not just
simply contain the function pointer, but it actually contains
executable instructions to set up the call before the target
function is invoked. EcoExec adopts executable messages to
enable efficient over-the-air execution of functions on the
sensor node. The function argument values have to be encoded
into the message, and the function return value has to be re-
turned to the host. Since the Host subsystem maintains detailed
information of the application program running on each node,
the host can generate a sequence of assembly instructions
for argument value passing, desired function invocation, and
return value handling based on this information. This sequence
of instructions is encoded into a message and sent to the target
node in an RF packet. Upon receiving the packet, the Node
subsystem examines the message within and executes it if it
is in the executable message format.

B. Function Invocation

Fig. 5 shows an example of how an executable message
causes function foo(10) to be called in the Node subsystem.
When an RF packet is received and read into the RF buffer in
the program memory, the first byte of the message is examined.
If it is 0, then it indicates that the message is an executable



TABLE II
RULES OF ARGUMENT PASSING USING REGISTERS FOR KEIL C51

COMPILER.

Arg. char or int or long, generic
No. 1-byte ptr 2-byte ptr float pointer
1 R7 R6, R7 R4–R7 R1–R3
2 R5 R4, R5 R4–R7 R1–R3
3 R3 R2, R3 R1–R3

TABLE III
RULES OF FUNCTION RETURN VALUES USING REGISTERS FOR KEIL C51

COMPILER.

Return Type Register Description
bit CY Carry flag

char, 1-byte ptr R7
int, 2-byte ptr R6/R7 MSB in R6, LSB in R7

long R4 – R7 MSB in R4, LSB in R7
float R4 – R7 32-bit IEEE format

generic ptr R1 – R3 Memory type in R3

message, as shown in step 1 in Fig. 5. An executable message
contains the reference to the desired function to be invoked.

As shown in the shaded part of program memory in Fig. 5,
the RF buffer where the received executable message is stored
can be seen as a memory space that contains a function while
the sequence of assembly instructions to be executed serves as
the content of the function. When the RF buffer is called, the
program counter is moved to the start of the buffer to carry
out the instructions stored within, which is step 2 in Fig. 5.

These instructions mainly involve MOV and LCALL in-
structions, used to copy argument values into their correspond-
ing memory locations and to call a function or a return value
handler. These MOV instructions are generated by the Host
subsystem based on the parameter passing rules defined by
Keil Cx51 (using registers to pass parameters) and the memory
address of function local variables. The Keil Cx51 compiler
allows up to three input arguments to be passed in CPU
registers with a fixed rule shown in Table II. The remaining
input arguments are passed with function local variables. Step
3 in Fig. 5 uses the assembly instruction “MOV R7, #10” to
set 10 as the parameter to the function foo.

LCALL instructions are generated by the Host subsystem
according to the memory address of the function and the
return value handler. These instructions are used to call the
desired function and return value to Host subsystem. Similar
to function parameters, Keil C compiler follows a rule when
generating instructions for handling the return value as shown
in Table III. As the memory content is stored in the RF buffer,
the original RET instruction at the end of the sequence of
instructions may be overwritten. Thus, the handler returns
directly to the main execution loop by popping out a return
address on the stack as shown in steps 5 and 6 in Fig. 5.

C. Subsystem Handlers

This subsection details the essential handler functions that
comprise the execute and store components of the Node
subsystem.

void return_value_handler(int len, char *addr, char *data);

The return value handler copies the return value into the RF
buffer (labeled RF_BUFFER in Fig. 5) in the program memory.
The RF buffer is formatted into a reply message and sent to
the host.
void store_handler(int len, char *addr, char *data);

The store handler copies the RF payload from the hardware
buffer to the program memory as specified in the store
message. By default, the code resides in RAM and will be
lost upon reboot. However, the user can set the EEPROM bit
in the store message to cause a copy of the code to be written
to the (off-chip) EEPROM.
void swap_handler(int len, char *ram_addr, char *rom_addr);

The swap handler is responsible for swapping a segment (of
code) from the EEPROM to the program RAM. In addition,
the handler can save the content of the program memory space
(that is about to be overwritten) to a designated location in the
external EEPROM.
void get_handler(int len, char *address);

A get handler copies the memory content from specified
address of the program memory or the data memory into the
RF buffer (labeled RF_BUFFER in Fig. 5) to be transmitted back
to the host in a reply message.
void set_handler(int len, char *address, char *data);

A set handler copies the payload content to the designated
memory address, pops out the return address at the top of the
stack, and returns directly to the main execution loop.

V. HOST SUBSYSTEM

The Host subsystem is divided into three parts: scripting
engine, code generator, and communication. The scripting
engine provides the interactive programming interface to the
wireless sensor nodes. It includes a general-purpose shell
named ExShell written in Python and enables users to access
all features in Python. It also wraps node references and
API in the form of dynamic objects in Python to facilitate
application development. The object wrapping also enables
the code paging mechanism to download code to the node if
it is not resident. The code may be compiled and linked if
necessary. Then, communication with the sensor node is done
by sending the packet via Ethernet to the base station, which
then forwards the packet to the target node.

A. Scripting Interface
The scripting engine handles the execution of every in-

put command. Each command is a Python statement that
is verified by ExShell before execution. Commands can be
further defined collectively in a script file for batch execution.
Commands can be roughly categorized into local host com-
mands and remote node commands. Syntactically there is no
difference. Users access the nodes with object syntax, and the
object wrapper automatically handles them, by communicating
and reprogramming the sensor node if necessary. Fig. 1 shows
an example of a command script.
Line 1: n = Node(addr)

This calls the constructor for Node class with the node address
and assigns the object reference to variable n.



Line 2: n.T

Python calls n.__getattr__(name="T").
This accesses the attribute named T in the node instance named
n. The scripting engine handles it by sending a message to the
node referenced by n to look up the value, receiving the value,
formatting and displaying it when in interactive mode.
Line 4: n.T = 200

Python calls n.__setattr__(name="T", value=200).
This assigns the value 200 to the attribute named T in the
node instance n. The scripting engine handles it by sending a
message to the node referenced by n to set the T attribute to
the value 200.
Line 7: n.blink_LED(10)

This calls the function named blink_LED on the node n with
parameter value of 10 (time units). If the function does
not already exist on the node, then the code generator part
generates the code, which is packaged and transmitted to the
node to be reprogrammed, and the node invokes the newly
installed function.
Line 8: n.sample_adc()

The host sends a message to the node n to call the sample_adc()

function, and the node replies with the ADC value. The host
receives the data, interprets it as an int (R-value), and renders
it as a decimal string in interactive mode on line 9. If the value
is assigned to a variable or in batch mode, then it does not
render the string.

This example demonstrates not only the highly interac-
tive access but also how EcoExec abstracts away all of
the complexity associated with network programming. The
implementation also represents a good match with Python
as a dynamic language. Each object carries a symbol table,
and methods (object-local functions) and attributes (fields, or
object-local variables) can be added and deleted at runtime.
By implementing the __getattr__ and __setattr__ methods,
one can have full control over exactly how each attribute
should be accessed, including caching and raising exceptions
if necessary. It also blends in naturally with the operator syntax
of Python expressions. This means node objects can be used in
ways entirely indistinguishable from ordinary Python objects.

It is also worth noting that the code on the node does not
need to perform string formatting. For example, on line 9 in
the example above, the interpreter prints the string returned by
the int object 240’s __repr__ method. This way, the node does
not need to perform any string formatting, while the value is
readily usable by other Python code without parsing.

B. Code Generator

The code generator is invoked on demand when a node is
about to execute a piece of code that is not resident in its
program memory. We use an existing compiler to generate
relocatable code and a linker to generate a new binary image
according to our specified memory layout. The Host subsystem
then transmits the diff’ed patches to the nodes. We describe
two cases: adding new code and modifying existing code. The
first case covers the programs being compiled for the first time.

1) Newly Added Code: The first case involves adding the
code, data, and constants of new functions to an existing pro-
gram. All existing segments, including code, data, constants,
global variables, and library routines, are kept at their original
addresses in order to avoid changing existing code. After fixing
those locations, the linker then automatically allocates new
addresses for new segments in the new function. We use the
first-fit policy to achieve the code replacement if the remaining
memory space is not enough for the newly added code.

2) Modifying Existing Code: Modifications include relocat-
ing a function or overwriting its content. If a callee function
is moved, then all callers must also be updated with the
new callee address, unless a jump table is used. Further-
more, the program structure has to be carefully managed
for reprogramming to take place during runtime without
rebooting. Modifications made to a function may affect the
sizes of its segments. As segments are tightly situated with
no gap in between segments, segments expanded due to the
function update would cause later segments to be relocated.
Consequently, references to the relocated segment need to be
patched. Reclamation of the memory space is passive as the
memory map stored on the host tracks free regions.

Upon the generation of a new program image, binaries of
the new functions are extracted while pre-existing segments
that are updated are diff’ed with the original to generate the
patching binaries. These patches are then wrapped into store
messages for installation or update on the target node.

C. Communication

A base station is attached to the host computer and is
considered part of the host, even though it contains its own
MCU and can run independently. Each host PC has a base
station connected to it by TCP/IP over Fast Ethernet. The base
station has an Ethernet adapter and a 2.4 GHz RF transceiver
for RF communication. Both the Ethernet interface and the
RF interface continuously listen for incoming Ethernet and
RF packets separately.

VI. EVALUATION

This section first describes the experimental setup used
to evaluate the performance of EcoExec. We present the
experimental results for a series of application updates in terms
of three metrics: upload size, execution latency, and code size.
To identify the bottleneck, we also analyze the performance
in each stage of the application update procedure.

A. Experimental Setup

This section gives a brief description of the hardware
used in the experiments and different applications remotely
programmed into the sensor node.

1) Wireless Sensor Node: We implemented the Node sub-
system of EcoExec on the ultra compact wireless sensor
node named Eco, as shown in Fig. 6. It is small, compact,
and highly resource-constrained. At the core of Eco is the
Nordic nRF24E1, which contains an integrated nRF2401A-
compatible transceiver in the 2.4GHz ISM band and an 8051-
compatible MCU core, plus digital and analog I/O interfaces.



(a) Eco on a fingertip. (b) Eco front view.

Fig. 6. Eco: 6(a) and 6(b).

The nRF24E1 also contains 4K bytes of RAM shared between
program and data. The firmware is stored in a separate elec-
trically erasable programmable read-only memory (EEPROM)
component that is 4K bytes in size.

2) Base Station: The base station hardware used in the ex-
periment is built by connecting a Nordic nRF2401 2.4GHz RF
transceiver module to a Freescale DEMO9S12NE64 evaluation
board over its 40-pin expansion connector. It contains a 16-bit
HCS12 MCU with 64K bytes of flash and 8K bytes of RAM,
plus a Fast Ethernet (10/100 Mbps) MAC/PHY transceiver that
serves as the uplink to the host.

3) Host computer: The host computer is a general purpose
PC with a Fast Ethernet adapter. It is equipped with Intel
Core2Duo CPU E7200, 2.53GHz clock frequency, and 3 GB of
RAM (2.96 GB usable). The PC runs the Keil C development
toolkit v8.16, Linker LX51 v4.34, and Python 2.6 on Windows
XP.

B. Applications

We have created three applications: Calculator, ADC-
Sampling, and a Snake game, with sequences of application
updates to demonstrate EcoExec’s interactive remote function
execution and reprogramming mechanisms and to evaluate
their performance.

The target sensor node is deployed with only the Node
subsystem running and no other application or firmware in-
stalled. At this time, only the essential drivers are installed,
specifically drivers for SPI access, EEPROM read/write, and
RF component manipulation. The command script is then
input into the Host subsystem to carry out the eight steps of
the experiment:

1) Calculator Installation: The first application, Calculator,
is installed on-demand. The Calculator application is com-
posed of a main CAL() function and several other functions.
Functions include PLUS() for summing up two arguments,
MINUS() for subtracting the second argument from the first,
MUL() for multiplying the two arguments, DIV() for division
of two arguments, and stepT() that takes only one input
argument and returns the sum of the input and global variable
T. Functions are defined in the function source file. They are
compiled and linked incrementally based on the need of the
Calculator application. The math library is also incrementally
linked to generate a new binary image.

2) Modifying Calculator Functions: Next, we modify the
source files for PLUS() and MINUS() functions, which are located
adjacently in the original code image. Both functions expanded

in size. The code for the new PLUS() function cannot fit in the
memory region in the original image, and thus it must be
moved to a larger available memory space. On the other hand,
the new MINUS() function can fit in the original space taken up
by PLUS() and MINUS(), and thus the new code is written into
this old region.

3) Major Modification to Calculator Application: The Cal-
culator application is furthered updated by removing cases
that involve calls to the math library in the CAL() function, as
well as exchanging content between cases. As a consequence,
the new CAL() function behaves almost entirely differently
from the original. Moreover, the composition of the library
segment is affected as math library functions are no longer
needed. Binaries of the library segment are also updated to
accommodate this change.

4) Installing ADC-Sampling: The code for ADC-Sampling
did not come pre-installed, and ExShell determines this condi-
tion by checking its local database. The Host subsystem incre-
mentally links the object file with the previous application that
exists. Because the memory cannot contain both applications,
the linker overwrites the original application code with that of
Calculator.

5) Adding Filter Functions: The next command invokes
three additional functions that act as filters for the converted
ADC values for each of the three axes. The sampling function
is also modified to include these filters. The Host subsystem
generates the newly added and modified code and loads it into
the node.

6) Minor Modification to the Filter Functions: We make
a minor modification to the filter functions by updating the
controlled return values. Each function may return one of the
two controlled values based on the comparison between the
actual value and the threshold.

7) Major Modification to the Filter Functions: We modify
the filter functions for X-axis and Y-axis by applying more
complex processing. In the original image, the code for the
X-axis filter is ordered immediately before that for the Y-axis
filter. Due to the size increase, one of the functions is relocated
elsewhere, while the other reuses the original space that was
taken by both old functions.

8) Install Snake_game: The code for Snake_game is to read
the triaxial acceleration values as sampled by the ADC. The
data is then used to control the direction of an animated snake
on the host side. Since some of the driver code such as RF
and ADC has been installed before, we need to upload only
the diff code, which is smaller than the entire code. Details of
the update phases are shown in Table IV.

C. Upload Size

We evaluate the performance of remote function execution
and remote reprogramming for each phase of the experiment.
Fig. 7 shows the total code size (excluding EcoExec), modified
code size, and the diff size. Note that the actual diff script is
slightly larger than the diff data, since it must contain metadata
for the patching command (action, starting address, segment
length). In the first step, when Calculator function is uploaded



TABLE IV
CONSISTING FUNCTIONS AND UPLOAD SIZE FOR EACH UPDATE PHASE

Step Update phase Consisting functions Diff/Mod./App. size(B)
1 Install Calculator CAL,MINUS,PLUS,DIV,MUL,LOG,RAND, 1801/1801/1801

SQRT,LIB_CODE,PUTS,SERIAL_WRITE
2 Modify PLUS,MINUS CAL,MINUS,PLUS 21/173/1801
3 Major modify Calc. CAL,MINUS,PLUS,LIB_CODE 306/1193/1801
4 Install ADC-Sampling ADC_READ,ADC_INIT, 190/190/190

MASS_READ_ADC,MASS_INIT_ADC
5 Add filters MASS_X_FILTER,MASS_Y_FILTER, 183/183/288

MASS_Z_FILTER
6 Minor modify filters MASS_X_FILTER,MASS_Y_FILTER, 24/63/288

MASS_Z_FILTER
7 Major modify filters MASS_READ_ADC,MASS_X_FILTER, 73/141/294

MASS_Y_FILTER,MASS_Z_FILTER
8 Install Snake_game SNAKE_READ_XYZ, MDELAY 291/291/1131

0

500

1,000

1,500

2,000

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

B
y

te
s

App. Size

Mod. Size

Diff Size

Fig. 7. Total application size, modified size, and diff’d size for the eight
steps in the code update

for the first time, there is no previous version to diff with.
Therefore, the diff size is equal to the size of the application.

In the second step, after Calculator has been installed, the
PLUS and MINUS functions are modified. In this case, the entire
PLUS function is moved and transmitted in its entirety, whereas
the MINUS function stays and is patched. The CAL function
itself is affected only as a caller of the moved function PLUS

(therefore a 1-byte diff).
In the third step, deletion of code and most math library

did not require any action on the node side. The diff code
consists of mainly rearrangement of cases within CAL function
(104-byte diff) and addition of other library code (named
?C?LIB_CODE with 198-byte diff).

The fourth and fifth steps are new installations, and therefore
the diff sizes are the same as the original.

In the sixth step, the three filters underwent minor modi-
fications. Four int-type constants are modified in each filter
function, requiring 8 bytes to be patched.

In the seventh step, two of the filter functions X_FILTER

and Y_FILTER are further reprogrammed with more complex
calculations. Similar to phase 2, the two functions expand;
but only the X_FILTER function is relocated while the Y_FILTER

function remains at the starting location that had extra space
due to the relocation of X_FILTER. The reference to X_FILTER

from inside MASS_READ_ADC has to be updated as well.
Finally, the snake game contains new code, although the

ADC functions can be reused. Some code that was marked
reclaimable space did not get reclaimed, and they were marked
non-free again when used by the new application. This does
not require another upload.

D. Memory Footprint

EcoExec consumes about 430 bytes of program memory
and 30 bytes of data memory, excluding the essential device
drivers. With the drivers, the system takes up about 1808

TABLE V
COMPARISON OF MEMORY FOOTPRINT (BYTES)

OS or Maté SOS TinyOS+ LiteOS Mantis EcoExec
Runtime core Deluge OS
Prog. mem. 39746 20464 21132 30822 ≈ 14000 ≈ 1808
Data mem. 3196 1163 597 1633 ≤ 500 ≤ 60

TABLE VI
LATENCY OF REMOTE FUNCTION EXECUTION

Command Samples Duration (s) Samples/s Sample duration (s)
No filters sampling 500 24 21 0.048
Add filters 50 2.6 19 0.052
Modify filters 50 2.3 21 0.046
Complex filters 50 3.1 16 0.062

bytes of program memory and 60 bytes of data memory. Its
memory footprint is significantly smaller than that of other
works that offer remote reprogramming support. Table V show
a comparison of memory footprints.

E. Command Latency

Latency is evaluated in the two scenarios: remote function
execution and remote reprogramming. We evaluate the time
needed for a request to receive its response, namely the
duration between entering a command and receiving a result.

1) Remote Function Execution: During each phase of the
ADC-Sampling application updates, a number of samplings
are requested by the Host subsystem. Table VI shows the
total execution time for sampling under different application
conditions. On average, the system retrieves 20 samples per
second (sps), or a 50 ms latency, which is barely noticeable to
the user. Sampling with simple or no filters results in 20 sps,
whereas adding complex filters results in 16 sps.

2) Remote Reprogramming: We measure the latency from
a command being issued to the application being installed
and executed. The latency of each update phase is shown
in Table VII. Fig. 8 shows the ratios of incremental linking
and uploading to the total duration. The upload duration is
proportional to the upload size. The incremental linking time
for ADC-Sampling application installation is higher than that
of other phases due to more complicated memory layout
adjustments to install a new application over the original
application while keeping shared functions at their starting
locations. Besides, the host PC we use may also affect the
time of incremental linking. On average, it takes about 2.5
ms to upload one byte and write it into program memory;
an additional 2.5 ms is needed to write the byte into off-
chip program memory (EEPROM). The incremental linking
process takes about 400 ms to 800 ms on average. Installing an
application that consumes 1800 bytes of program memory will
need about 5.5 seconds (worst case), while an average binary
takes less than 2 seconds. Such a response time is acceptable
as application updates happen only once in a while, and
interactive invocation does not always require reprogramming
most of the time. Furthermore, next-generation sensor platform
[22] will feature twice the data bandwidth (2 Mbps) and
hardware support for reliable communication. It is expected
to cut the latency even further.



TABLE VII
LATENCY OF REMOTE REPROGRAMMING (NOT WRITING INTO EEPROM).

Update phase Duration (sec) Incremental linking (sec) Upload (sec)
Install Calculator 5.51 0.40 4.36
Cal. minor modification 1.45 0.78 0.10
Cal. major modification 2.40 0.76 1.07
Install ADC-Sampling 4.25 3.19 0.51
Add filters 1.81 0.75 0.51
Modify filters 1.25 0.39 0.30
Complex filters 1.57 0.77 0.25
Snake game 1.78 0.76 1.02

Install Calculator

Cal. minor modification

Cal. major modification

Install ADC-Sampling

Add filters

Modify filters

Complex Filters

0 1.5 3.0 4.5 6.0

Duration(sec)

Incremental linking Upload Others

Fig. 8. Ratios of incremental linking and upload to the total duration.

F. Power Consumption
Table VIII shows the power consumption on Eco node in

different modes. The power consumption of program memory
write is 8.88mW, which is less than 15.54 mW when doing
EEPROM write.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a framework for wireless sensor
node interaction called EcoExec. The framework offers as-
sistance to programmers for remote function execution and
remote reprogramming of sensor node programs. EcoExec
extends the limited computation capabilities of sensor nodes
to the feature-rich functionalities of Python by providing a
Python-abstraction for WSN. Experimental results show that
the framework is memory-efficient and yields low latency in
sensor node service requests.

Future work includes improving code replacement policy
and transmission overhead. Currently memory is allocated but
not released unless manually marked so, but it should be auto-
mated with lifetime analysis. Data relocation also needs to be
taken into consideration. When new functions cause existing
functions to be evicted, we currently use the first-fit policy, but
a better policy may be based on how frequently a piece of code
is executed or on temporal locality (e.g., least-recently used).
In addition, we are working on porting more applications
to EcoExec. To improve power efficiency, we could include
some power management mechanisms or incorporate some
energy-efficient MAC protocols, although one may need to

TABLE VIII
POWER CONSUMPTION ON ECO NODE (AT 2.2V)

Power RF Tx RF EEPROM Program Idle
mode (0dBm) Rx write mem. write
Power (mW) 32.93 45.88 15.54 8.03 7.66

make trade-offs between latency or memory footprint. Another
direction for future work includes more optimization based
on run-time constants and multi-hop topologies. These are
expected to make the extremely resource-constrained, low-cost
WSN platforms useful for many applications. The source code
to EcoExec is available on our website [23].

VIII. ACKNOWLEDGMENTS

This work was sponsored by the National Science Founda-
tion CNS-0448668, CNS-0721926, CBET-0933694, the Na-
tional Science Council (Taiwan) NSC 98-2200-E-007-006, and
Ministry of Economy (Taiwan) 98-EC-17-A-07-S1-001.

REFERENCES

[1] J. Hill, et al., “System architecture directions for networked sensors,” in
ASPLOS-IX, 2000, pp. 93–104.

[2] S. Bhatti, et al., “MANTIS OS: an embedded multithreaded operating
system for wireless micro sensor platforms,” Mob. Netw. Appl., vol. 10,
pp. 563–579, 2005.

[3] Crossbow Technology, Inc, “Mote in-network programming user refer-
ence version 20030315,” http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf,
2003.

[4] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update
mechanism for wireless sensor networks,” UCLA, Tech. Rep., 2003.

[5] S. S. Kulkarni and L. Wang, “Mnp: Multihop network reprogramming
service for sensor networks,” in ICDCS, 2005, pp. 7–16.

[6] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in SenSys, 2004, pp. 81–94.

[7] N. Reijers and K. Langendoen, “Efficient code distribution in wireless
sensor networks,” in WSNA, 2003, pp. 60–67.

[8] J. Koshy, “Remote incremental linking for energy-efficient reprogram-
ming of sensor networks,” in EWSN, 2005, pp. 354–365.

[9] J. Jeong and D. Culler, “Incremental network programming for wireless
sensors,” in SECON, 2004, pp. 25–33.

[10] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University, 2000.

[11] P. J. Marron, et al., “FlexCup: A flexible and efficient code update
mechanism for sensor networks,” in EWSN, 2006, pp. 212–227.

[12] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in LCN, 2004,
pp. 455–462.

[13] A. Dunkels, et al., “Run-time dynamic linking for reprogramming
wireless sensor networks,” in SenSys, 2006, pp. 15–28.

[14] H. Cha, et al., “RETOS: resilient, expandable, and threaded operating
system for wireless sensor networks,” in IPSN, 2007, pp. 148–157.

[15] C.-C. Han, et al., “A dynamic operating system for sensor nodes,” in
MobiSys, 2005, pp. 163–176.

[16] A. Boulis, C.-C. Han, and M. B. Srivastava, “Design and implementation
of a framework for efficient and programmable sensor networks,” in
MobiSys, 2003.

[17] J. K. Ousterhout, “Tcl: An embeddable command language,” in Pro-
ceedings of the USENIX Winter 1990 Technical Conference, 1990.

[18] Q. Cao, et al., “The LiteOS operating system: Towards unix-like
abstractions for wireless sensor networks,” in IPSN, 2008, pp. 233–244.

[19] J. Lifton, et al., “Pushpin computing system overview: A platform for
distributed, embedded, ubiquitous sensor networks,” in Pervasive, 2002,
pp. 139–151.

[20] Q. Xie, J. Liu, and P. H. Chou, “Tapper: A lightweight scripting engine
for highly constrained wireless sensor nodes,” in IPSN, 2006.

[21] T. V. Eicken, et al., “Active messages: a mechanism for integrated
communication and computation,” in ISCA, 1992, pp. 256–266.

[22] C.-Y. Chen, et al., “EcoSpire: An application development kit for an
ultra-compact wireless sensing system,” in Embedded Systems Letters,
2009.

[23] “EcoExec Source Files.” [Online]. Available:
http://epl.cs.nthu.edu.tw/EcoKit/download/EcoExec.zip


