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ABSTRACT

Wireless sensor networks have opened opportunities for new applications and attracted

users from domains beyond computer system design. Sensor network design is challeng-

ing. It is generally an ad hoc process carried out by embedded system experts. In this

dissertation, we argue that human efforts necessary to the design of sensor networks can

be reduced with the help of high-level specification languages, compilers, and synthesis

tools. We designed and implemented a framework to simplify and automate the design of a

class of sensor network applications. Our results show that a sensor network novice given

only a few pages of instructions, can successfully specify sensing applications within 30

minutes, compared with hours or days required by prior approaches. Within approximately

30 minutes, our modeling and design exploration techniques translate these specifications

into implementations, automatically selecting from among 405,790 designs. Moreover,

our memory management and compiler-assisted techniques make difficult-to-implement

optimizations available to novice programmers, enabling better tolerance of sensor faults

and making 39% more usable memory available than would otherwise be the case.

We propose a design process that decouples specification from implementation. Appli-

cation designers specify abstract functionality and design requirements. Compiler and syn-

thesis tools automatically determine implementation details, optimizing design parameter

optimization and generating code. First, we develop a design process in which program-

ming novices (e.g., application experts) use high-level, specification languages designed

for particular classes of applications. We focus on the class most commonly encountered

xiii



in sensor network deployment publications. Second, we develop two compiler and run-

time techniques to relieve application experts from explicitly dealing with sensor faults

and limited memory, two common sources of sensor network design complexity. The first

technique automatically generates code for fault detection and error estimation using easy-

to-specify hints. The second technique automatically generates code for online memory

compression, thereby increasing effective memory. Finally, we develop modeling and op-

timization techniques to determine high-level design parameters to meet specified design

requirements. We present an automated technique that constructs fast and accurate system-

level models for sensor networks and an optimization technique that uses these models to

rapidly search for the optimal design(s). Our evaluation focuses on homogeneous environ-

ments.

xiv



CHAPTER I

Introduction

A wireless sensor network consists of spatially distributed autonomous devices, de-

noted as sensor nodes or motes, that are capable of sensing, computing, communicating

with each other wirelessly, and possibly actuating. Sensor nodes are usually small, in-

expensive, lightweight, and low power. Although each sensor node is tightly constrained

in computation capability, storage capacity, and energy consumption, a large number of

these tiny devices can collaboratively execute complex tasks such as object classification

and tracking. Wireless sensor networks have opened opportunities for ubiquitous, unob-

trusive, and perpetual sensing. As a result, they are natural fits for numerous applications,

such as environmental monitoring, infrastructure intelligence, transportation, health care,

and surveillance.

Wireless sensor networks empower individuals to gather fine-grained, precise, and ex-

tensive information from the physical world. This information can be used to make smart

decisions and have timely reactions. Wireless sensor networks will have significant im-

pact on our economy and life with their countless uses. Farmers can enhance quality

of their products by planning farming practice according to temperature and soil mois-

ture data gathered from a wireless sensor network deployed in their crops [121]. Scien-

tists can gather valuable data on their study objects leading to new scientific discover-

1
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ies [108, 142, 136]. Home owners and building facility managers can detect energy waste

and plan accordingly to save energy with device-level energy use data gathered by wireless

energy meters. A nation under threat of natural disaster can use sensor networks to detect

disaster sources and predict its impacts in order to minimize damage. Factories can enable

sensing and controlling in locations that previously would have been cost-prohibitive to

control industrial process.

With the advances in MEMS sensing technology, low-power computing, and wireless

communication, the market of sensor network is expected to grow rapidly in the coming

years. Nevertheless, the cost for design and deployment does not decrease as fast as the

hardware prices. We anticipate that there will be a greater need for appropriate design

tools for wireless sensor networks. They are not only critical for reducing design costs and

time-to-market, but also have the potential to open sensor networks to vast users. When

wireless sensor networks become widely adopted in various aspects of our lives, more and

more people will start to possess and manage wireless sensor networks.

Researchers have devoted tremendous amount of efforts to improve wireless sensor

networks by designing low-power hardware components, reliable communication proto-

cols, energy management mechanisms, etc. While existing research has been focused on a

bottom-up approach that intends to improve building blocks for wireless sensor networks,

we believe that it is also important to take a top-down approach that starts from appli-

cations and users and captures high-level design trade-offs. We intend to bridge the gap

between existing techniques and potential sensor network users to allow them to efficiently

and easily use existing techniques for their applications.



3

1.1 Challenges of Designing Wireless Sensor Networks

Designing a sensor network is a challenging job. It involves the development of a

distributed system composed of resource-constrained and fault-prone devices that interact

with each other via unreliable wireless channels. Specifically, a sensor network designer

faces the following challenges.

1. A designer needs to convert network-level functionalities and requirements to be-

haviors of individual sensor nodes. The mapping between node-level performance

and network-level performance is usually complex.

2. A sensor network is an “open” system that is largely affected by its deployment envi-

ronment. The environment not only affects how wireless signals are propagated but

also the reliability of sensor nodes. Ignoring environmental effects on component

reliability and network reliability leads to performance overestimation.

3. The sensor nodes are usually equipped with limited resources, such as battery energy

and memory size. Resource usage should be carefully analyzed and planed. Some-

times, special techniques needs to be used to deal with tight resource constraint, e.g.,

data compression. However, entangling resource management code with functional-

ity code not only increases complexity of programming, but also increases chances

for software bugs.

4. Creating the software that manages applications running on sensor nodes and con-

trols the networks is currently so technically intricate, complex, and laborious that it

can take months of work by experienced programmers just to deploy a simple appli-

cation. Debugging is inherently difficult because it is costly to monitor node states

and hard to repeat the same behavior.
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5. Designers usually have a handful of system attributes to optimize. When one design

parameter is tuned to improve one attribute, it is likely the other attribute will be

affected negatively. In other words, they are dealing with a large number of design

parameters that are interdependent in a big design space. Design a sensor network

requires a proper understanding of the interplay between multiple hardware and soft-

ware components.

These challenges are so significant that they have slowed deployment plans and tem-

pered initial excitement about wireless sensor network technology. In addition, application

experts such as biologists, geologists, and environmental engineers are forced to rely on

embedded system experts to implement their ideas. Almost all existing sensor network

deployments are implemented by embedded system experts. This approach is costly. Sep-

arating design and implementation in this way can also lead to errors due to miscommu-

nication between application experts and embedded system experts. Application experts

generally have limited awareness of the constraints on sensor network capabilities im-

posed by hardware and software limitations. On the other hand, embedded system experts

know little about the application requirements, which are tightly related to the measured

objects and the working environments. In addition, since application experts’ and em-

bedded system experts’ domain languages differ significantly, this can cause confusion

and misunderstandings that lead to incorrect implementations. Consequently, a collabora-

tion between application experts and embedded system experts requires a large amount of

communication, negotiation, redesign, and reimplementation. Wireless sensor networks

are considered by potential users because they have the potential to save time and money.

When these potential benefits are outweighed by substantial increases in implementation

complexity compared to the bulky and expensive, but often easy-to-deploy, sensing solu-

tions already in use, wireless sensor networks will remain unused.
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1.2 Towards Wireless Sensor Network Design Automation

We believe that a lot of human efforts in the current design of sensor networks can

be eliminated with automated design techniques. Ideally, an intelligent design tool chain

that assists any application experts requires no expertise in embedded system design; it

lets designers specify what they want instead of how to achieve their goals. An auto-

mated design flow takes high-level specifications as inputs and automatically generates

detailed, ideally optimal, implementations. The key components of an automated design

framework include specification languages in which designers describe their applications

and requirements, compiler techniques and synthesis algorithms that transform high-level

specifications to low-level implementations, and models that are used to analyze a poten-

tial design.

An automated design flow has many advantages. First, it allows efficiently exploring a

large design space that contains numerous alternative designs; this is impossible with man-

ual design. In this way, it can generate designs with better qualities than manual designs.

Second, it reduces design and development time. Last but not the least, it has the potential

to open the design of wireless sensor network to individuals who are not embedded system

experts, allowing sensor networks to be quickly adopted in various domains.

Wireless sensor network design is essentially a multi-objective optimization problem.

An automated design framework is based on a precise problem formulation. In order to

design an appropriate interface between designers and the optimizer, it is important to

determine the set of costs or performance metrics application experts care about. For

sensor network applications, designers generally care about performance of the network

as a whole, instead of individual sensors’ behaviors.

The sensor network application space is enormous and constantly expanding. We per-
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ceive substantial challenges in designing an unified solution for arbitrary sensor network

applications while achieving simplicity in the specification languages. Fortunately, many

existing applications have common characteristics. This inspires us to classify the appli-

cation domain to categories for the purpose to designing separate solutions for each ap-

plication class. In this dissertation, we attempt to define and solve the design automation

problem for a specific class of sensor network applications. Instead of defining an arbitrary

class of applications, we favor a systematic approach to categorize the application space.

We will start with the most common class of applications, hoping that our approach can

be readily used for a substantial class of real-world applications. Our work is a first step

towards the automated design of general sensor network applications.

1.3 Dissertation Goal

This dissertation aims to address the key challenges in developing an automated design

framework for a class of sensor network applications, including design of specification

languages to allow application experts to easily describe their application functionality

and requirements, developing compiler and synthesis tools to generate low-level imple-

mentation details from high-level specifications, and system-level performance models to

efficiently map a potential design to a cost vector. We will formulate the design as an

application-oriented problem instead of an implementation-oriented problem. This re-

quires identifying which design aspects falls into the application domain, and which falls

into the implementation domain, and more importantly, how to generate the final imple-

mentation from the high-level application specification. The first step is to identify a class

of applications to focus on based on a systematic categorization of the application domain.
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1.4 Dissertation Overview

In Chapter II, we survey existing sensor network applications and categorize the ap-

plication domain for the purpose of developing compact, special-purpose programming

languages for sensor networks. We also present a framework for automated wireless sen-

sor network design.

In Chapter III, we describe a high-level compact language, WASP, and its associated

compiler developed for the first archetype. We also present the design and results of user

studies to evaluate the designed language and other existing languages. In addition, we

describe the specification language for design requirements.

In Chapter IV, we describe our techniques to automatically generate fault detection

and error estimation code from high-level specifications.

In Chapter V, we describe compile-time and run-time techniques to increase the amount

of usable memory in sensor nodes and other MMU-less embedded systems. Our tech-

niques do not increase hardware cost and require few or no change to existing applications.

In Chapter VI, we describe our approach to automatically generate system-level per-

formance models for sensor networks. We describe how we use this approach to generate

system lifetime models considering both battery depletion and node fault processes.

In Chapter VII, we describe a model-based design optimization technique for homo-

geneous environment. We compare it with a simulation-driven heuristic search. We also

discuss challenges and potential solutions for heterogeneous environments.

Finally, we summarize our contributions and present conclusions in Chapter VIII.

Appendix A describes an anomaly in our experiments with the MoteLab testbed.



CHAPTER II

Archetype-Based Design for Sensor Networks

In this chapter, we propose the concepts of sensor network application archetypes and

archetype-specific languages. We examine a wide range of wireless sensor networks to

develop a taxonomy of seven archetypes. This taxonomy permits the design of compact

languages that are appropriate for novice programmers. In addition, we propose a design

framework to define the design problem for application experts. Section 2.1 introduces the

concept of archetype-based languages. Section 2.2 describes our approach to categorize

wireless sensor network applications and presents the archetype taxonomy. Section 2.3

proposes a framework for automating the design process for one application archetype.

2.1 Archetype-Specific Languages

The first step to designing a programming language is to determine the scope of ap-

plications it will support. There are two extremes of the range of design philosophies a

language designer might adopt: a language might be entirely general-purpose or entirely

application-specific. General-purpose languages can be used to specify any application.

However, all other things being equal, this flexibility is obtained at the cost of increased

language complexity. General-purpose languages have advantages: once such a language

is learned, one can write any application with it. However, a novice programmer may

8
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never be willing to expend the time to learn it. In contrast, application-specific languages

are usually simple and compact, but support only one type of application. This makes it

more difficult for a novice programmer to select the appropriate language for an applica-

tion, and requires the design of numerous languages – one for each type of application.

Designers need to learn a new language with each new application. We believe the opti-

mal design philosophy for sensor network programming languages is somewhere between

these extremes: a moderate number of specialized languages that together cover most of

the sensor network application domain. Ideally, each of these languages should be easy to

learn and use for novice programmers.

To find the best tradeoff between the complexity of selecting a language and the com-

plexity of the languages, we propose the concept of sensor network archetypes. We have

categorized sensor networking applications into archetypes based on functional properties

that have large impacts on language design. We have examined a wide range of sensor net-

work applications in order to develop a taxonomy of seven archetypes (see Section 2.2).

The language tailored for an archetype is called an archetype-specific language.

The taxonomy of sensor network archetypes guides the design of specialized languages

for each archetype, these are referred to as archetype-specific languages. The concept of

archetypes allows templates to be designed to further reduce the programming burden for

application experts. In our user study (refer to Section 3.2.2), most test subjects indicated

that examples help them to understand a new language. Therefore, we propose the concept

of archetype templates. These can be generic example programs for specific archetypes or

incomplete programs with parameters and lines of code to be modified by programmers

according to their needs. An application expert uses an archetype-specific language by

reading a short tutorial and using an archetype template to implement an application. We

want this procedure to be easy and efficient for novice programmers.
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In short, archetype-specific languages have the following advantages.

1. An application expert only needs to learn the language features that are relevant to

the application of interest. This reduces required learning and development time.

2. The simplicity of archetype-specific languages permits short tutorials, simple gram-

mars, high levels of abstraction, and productive use of archetype templates. This

reduces development time, improves correctness rates, and increases the satisfac-

tion of novice programmers with the design process.

3. The design of high-level languages is simplified by targeting specific groups of ap-

plications.

2.2 Taxonomy of Wireless Sensor Network Applications

Specialized, high-level specification languages have the potential to open sensor net-

work design to application experts who are novice programmers. Finding the optimal

partitioning of the sensor network application domain for the purpose of language design

is challenging. This section describes our study of a wide range of sensor network appli-

cations in order to build a taxonomy of sensor network archetypes, and thus languages.

Although the sensor network application domain has been studied and categorized be-

fore by Röemer and Mattern [116], their results are not directly applicable to our needs.

We classify sensor network applications for a different purpose: archetype-based program-

ming language design. We focus solely on application properties that affect the complexity

of specification language.

We studied 23 sensor network applications and summarized their application-level re-

quirements and functionalities to extract 19 application properties. These applications,

most of which have been deployed, span a wide range of domains: environmental moni-
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toring, structural health monitoring, habitat monitoring, target detection and localization,

residential monitoring, active sensing, medical care, farm management, etc. Specifications

should focus on the requirements of an application, and avoid implementation details to

the greatest degree possible while still maintaining adequate performance. Based on this

principle, we identified the following 19 application-level properties (refer to Section 2.2

for definitions): mobility, initiation of sampling process, initiation of data transmission,

interactivity, data interpretation, data aggregation, actuation, homogeneity, topography,

sampling mode, when sensor locations are known, synchronization, unattended lifetime,

mean time to failure, maximum node weight, maximum node size, maximum node vol-

ume, maximum node mass, covered area, and quality of service.

Among the 19 application properties, only eight affect the complexity of the speci-

fication language. Other properties are constraint-oriented and have little impact on the

specification of sensor network functionality. For example, changing the required lifetime

of the system from a month to a year will not change the functional specification, although

the implementation may change. Specifying constraints can be uniform and straightfor-

ward across many application domains, unlike functional specifications. The syntax will

be presented in Section 3.3. Therefore, we ruled out these properties as criteria for placing

applications. The following eight properties remain.

• Mobile indicates whether the sensor nodes are mobile. Mobile nodes may be wear-

able devices to monitor or track moving objects such as humans and animals [141,

121]. Sensor nodes might also adjust their positions. For applications with mo-

bile sensor nodes, specifications of node localization and node movement control

are usually desired. Therefore, mobile sensor network applications require more

complex specifications.
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• Initiation of sampling indicates the condition that causes the nodes to start sam-

pling. It can be periodic, event driven or a mix. Periodic sampling requires specifi-

cation of the sampling period, while event-driven sampling requires the specification

of events.

• Initiation of data transmission indicates the condition in which nodes send data

through the network. It can be periodic, event driven, or both. Applications for event

detection usually require data to be sent to a base station under a certain condition.

• Actuation indicates whether the sensor network produces signals to trigger or con-

trol other hardware components. For example, the autonomous livestock control

application [141] generates stimuli to bulls when the sensor network detects two

bulls will soon fight. Actuation requires the specification of triggering conditions

and actuation actions, and is therefore more complex than specifying only sensing.

• Interactivity indicates whether the network is required to respond to commands

sent during operation. Interactions are usually required for initial deployment, re-

programming, maintenance, adjusting operational parameters, and on-site visits. In-

teractivity requires the specification of commands and reactions.

• Data interpretation indicates that in-network data processing is carried out on raw

sensor data to filter or compute derivative information. Such online data interpreta-

tion may support automated decisions or other actions. Support for data interpreta-

tion requires specification of the data processing procedures.

• Data aggregation indicates whether data should be aggregated across multiple sen-

sor nodes. Data aggregated requires the ability to specify aggregation algorithms as

well as the group of nodes the aggregation operation applies to. For this reason, data

aggregation complicates specification.
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• Homogeneity indicates whether the functionality of every sensor node in the net-

work is the same. For a heterogeneous network, the specification language needs to

provide the ability of distinguishing among different types of nodes.

The crossproduct of these eight application attributes results in at least 256 unique

points in the language design space. The 23 application samples form 20 points, as shown

in Table 2.1. The extreme of designing one language for each point would make it difficult

for a user to identify the correct language and increases the burden of language design.

Our goal is to find the categorization of sensor network applications that minimizes the

complexity of categorizing applications within categories (archetypes) and the complex of

using the corresponding language, while also limiting the number of languages required

to make the language design process practical.

A good partition should cluster some application types that are adjacent or nearby in

the attribute space. In addition, the number of attributes for which multiple dimensions are

spanned should be minimized. This suggests using a clustering algorithm for categoriza-

tion. We adopted the K-Means algorithm to cluster the 23 applications. Dimensions with

orthogonal values are treated as sets; dimensions with comparative values are mapped to

scalar values with larger values indicate more complex functionality. Choosing the num-

ber of clusters involves a trade-off between the complexity of individual languages and

the number of languages. The complexity of the specification language corresponding to

each application type is hard to quantify precisely ahead of time and the specification lan-

guage for a potential application category cannot be accurately predicted without language

design and evaluation. Therefore, choosing the number of clusters is a somewhat ad-hoc

process based on prior experience with sensor network and language design. The resulting

clustering-based archetypes are shown in Table 2.2. A row in the table corresponds to one

archetype. The “size” column indicates how many applications fit into the corresponding
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Table 2.1: Sensor Network Applications
Application Mobile Sampling Data Actu- Inter- Data Data Homo-

process transmission ation active interpretation agg. geneous
Wisden [102] N periodic periodic N N Y Y Y
Habitat [108] N periodic periodic N N N N Y
Bridge [57] N periodic periodic N N N Y Y

FireWxNet [49] N periodic periodic N N N N Y
Light control [123] N periodic periodic N N N N Y

ACM [31] N periodic periodic N N N N Y
Redwoods [136] N periodic periodic N N N Y Y
Surveillance [5] N periodic event N Y Y Y Y

VigilNet [45] N hybrid event N N Y Y Y
SenSlide [119] N periodic event N N Y Y Y
Tracking [118] N periodic event N N Y Y Y
Shooter [122] N event event N N Y Y Y
Volcanic [142] N periodic event N N Y N Y

ElevatorNet [32] Y periodic periodic N N Y N Y
ZebraNet [78] Y periodic event N N N Y Y

Active sensing [146] Y periodic event Y N Y Y Y
Animal control [141] Y periodic periodic Y N Y N Y

Farm [121] Y periodic periodic Y Y N N N
ALARM-NET [144] Y periodic hybrid N Y N N N

CodeBlue [120] Y periodic hybrid N Y Y N N
PIPENET [127] N hybrid hybrid N Y Y Y Y
NETSHM [22] N event hybrid Y Y N Y Y

Tunnel [73] Y periodic event N N Y Y N

Table 2.2: Sensor Network Archetypes
Arche- Size Mobility Sampling Data Actu- Inter- Data Data Homo-

type transmission ation active interpretation agg. geneous
1 7 stationary periodic periodic N N * * Y
2 6 stationary * event N * Y * Y
3 4 mobile periodic * * N * * Y
4 3 mobile periodic * * Y * N N
5 1 stationary hybrid hybrid N Y Y Y Y
6 1 stationary event hybrid Y Y N Y Y
7 1 mobile periodic event N N Y Y N
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Figure 2.1: Automated design flow.

archetype. An archetype is defined by its values in the eight application attributes. “*”

means any value is accepted. Note that the specification languages may overlap, i.e., an

application may be a member of multiple archetypes.

2.3 A Framework of Automated Design for Sensor Networks

We now propose a framework for fully automated design of wireless sensor networks.

It aims to decouple specification from implementation thus minimizing human efforts dur-

ing the design while allowing exploring a large design space.

Figure 2.1 demonstrates the design flow. Shapes with gray backgrounds indicate de-

signer’s responsibilities. Shapes with clear backgrounds indicate the responsibilities of

the design tools. An application designer starts with indicating characteristics of his ap-

plication to the application classifier. These characteristics are listed in Chapter III and

are used to determine which archetype an application belongs to. The application classi-

fier selects the archetype according to the designer’s inputs and displays the programming

template and manual for the corresponding archetype-specific language. The designer

then specifies the application-level functionality (a specification language for this purpose

is presented in Section 3.2.1) and design requirements (a specification language for this
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purpose is presented in Section 3.3). The synthesis algorithm then searches the optimal so-

lution in the design space for the given design problem (refer to Chapter VII). During this

step, design parameters such as sensor placement, selection of hardware platform, node

configuration, battery, etc. are determined. The performance models constructed with

techniques described in Chapter VI can be used for quick evaluation of potential solutions.

Executables are then generated for the selected platform. During this step, code generation

for fault detection, error estimation, and data compression may be used if necessary (refer

to Chapter IV and Chapter V). The designer receives the synthesis results: executables,

description of placement, along with deployment instructions.



CHAPTER III

High-Level Specification Languages

In this chapter, we present specification languages for application functionality and

design requirements. We describe a language (named WASP) and its associated compiler

for a commonly encountered archetype identified in Chapter II. We conducted user stud-

ies to evaluate the suitability of WASP and several alternatives for novice programmers.

To the best of our knowledge, this 56-hour 28-user study is the first to evaluate a broad

range of sensor network languages (TinyScript, Tiny-SQL, SwissQM, and TinyTemplate).

On average, users of other languages successfully implemented their assigned applications

30.6% of the time. Among the successful completions, the average development time was

21.7 minutes. Users of WASP had an average success rate of 80.6%, and an average devel-

opment time of 12.1 minutes (an improvement of 44.4%). We also present out definition

of the sensor network design problem and describe the specification language for design

requirements.

The rest of this chapter is organized as follows. Section 3.2.1 describes the proposed

language for the frequently-encountered sensor network archetype. The design of this

language is guided by the concept of archetype-specific language proposed in Chapter II.

Section 3.1 summarizes prior work on programming languages for sensor networks. Sec-

tion 3.2.2 and Section 3.2.3 present our evaluation user study and the experimental results.

17
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Section 3.3 presents our definition and language for design requirements. Finally, Sec-

tion 3.4 concludes this chapter.

3.1 Related Work

Researchers have proposed new sensor network languages to improve design produc-

tivity. However, most of these languages have been designed with expert programmers in

mind. Although they may improve the productivity of embedded system experts, they are

unlikely to make the design and deployment of sensor networks accessible to application

experts who are often novice programmers. A few languages have been proposed for ap-

plication experts. However, their use by novice programmers has not been experimentally

evaluated, making it difficult to draw conclusions about their suitability. In this section,

we review these languages and summarize the major differences of our work.

Node-level programming languages specify the behavior of each single sensor node.

NesC [39] and C are widely used node-level programming languages for sensor networks.

Although node-level programming allows manual cross-layer optimizations, they require

substantial expertise and effort. These languages are too low-level for novice program-

mers. In addition, concepts such as events and threads are quite difficult for novice pro-

grammers to learn. Efforts [44, 69] have been made to raise the abstraction level of these

languages.

Numerous high-level programming languages have been developed for wireless sen-

sor networks to ease their development process. The objective of these languages is to

provide appropriate abstractions to hide low-level implementation details from program-

mers. Network-level programming languages, also called macro-programming languages,

let programmers treat the whole network as a single machine [82,95,17,98,9]. Lower-level

details such as routing and communication are hidden from programmers. More impor-
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tantly, they allow programmers to write a distributed sensing application without explicitly

managing coordination and state maintenance at the individual node level. Pleiades [59]

extends C to achieve a centralized perspective with access to all the nodes in the net-

work via naming. TinyDB and SwissQM allow designers to treat the sensor network as a

database and use query languages to extract data from the network [82,95]. Regiment [98]

lets programmers view the network as a set of distributed data streams. MacroLab adopts

a vector programming abstraction and each vector element corresponds to a node in the

network [51]. ATaG [9] is based on data-driven program flow and mixed imperative-

declarative specification. It lets developers graphically declare the data flow and con-

nectivity of virtual tasks and specify the functionality of tasks using common imperative

language. RuleCaster [17] provides a macroprogramming abstraction with a state-based

model and uses a high-level language similar to Prolog.

A few researchers have considered the accessibility of sensor network design to ap-

plication experts. Some languages [42, 52] are inspired by commercial graphical pro-

gramming tools such as LabView [62] and Excel. Other researchers made the design of

easy-to-use languages tractable by targeting a specific type of application. NETSHM [23]

is a sensor network software system for structural health monitoring applications.

We are aware of only two other publication describing experiment evaluation of usabil-

ity of a sensor network programming language. Eon, which is a programming language

proposed for adaptive energy management, has also been evaluated with a user study, but

involving only experienced programmers [124]. BASIC was proposed for use in sensor

network programming [89]. The authors implemented BASIC for sensor networks and

conducted a user study with novice programmers. Their user study is contemporaneous

with ours. Their work targeted a different application domain than ours and focused on

node-oriented programming.
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More comprehensive reviews and comparisons of existing sensor network program-

ming languages can be found in surveys [133, 91]. Mottola and Picco [91] introduced a

taxonomy of wireless sensor network programming models. Sugihara and Gupta [133]

compared the languages using three metrics: energy-efficiency, scalability, and failure-

resilience. They acknowledged that ease of programming is a very important criteria but

they believed “criteria of easiness is inherently subjective and the complexity of code

largely depends on each application”. In contrast, we believe that it is possible and impor-

tant to evaluate the usability of sensor network languages and have designed and executed

a rigorous user study to compare a number of languages.

3.2 WASP: An Example Archetype-Specific Programming Language

We believe that appropriate high-level programming languages and compilers have the

potential to make wireless sensor networks accessible to the application experts who have

the most to benefit from their use. We propose designing sensor network languages with

the novice programmer in mind, hence the following language features are desirable.

1. The languages should support specifying application-level requirements, not just

node-level behavior.

2. The languages should not expose low-level implementation details, such as resource

management, fault recovery, communication protocols, and optimizations, to users.

Users should only need to specify application requirements.

3. The languages should be compact and easy to use. People with limited or no pro-

gramming experience should be able to almost immediately learn and use them to

specify correct sensor network applications.
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Once an application’s archetype is known, it is possible to provide a program tem-

plate/example as a starting point. Our studies indicate that the availability of templates

improves the success rate for novice programmers implementing sensor network appli-

cations from 0% to 8.3% for a node-level language. However, our results suggest that

templates are insufficient to make a complex language accessible to novices. Knowledge

of an archetype further reduces the burden on a novice programmer because only one

archetype-specific language needs to be learned, and each such language is simpler than

a general-purpose programming language. We have embodied these language design con-

cepts in a language, called WASP, for a frequently encountered sensor network archetype.

In comparison with alternative sensor network programming languages such as TinyScript,

TinyDB, and SwissQM, this language results in 1.6× average improvement in success rate

and 44.4% average reduction in development time.

This chapter makes the following contributions.

1. We developed a programming language and compiler for the most frequently-encountered

archetype.

2. We propose and justify the use of the concept of archetypes to enable the design of

compact languages for use by application experts.

3. We conducted user studies to evaluate the proposed programming language and al-

ternative sensor network programming languages. To the best of our knowledge,

our 56-hour, 28-user study is the first to evaluate a broad range of sensor network

languages.

4. The results of our user study provide insights into the design of programming lan-

guages that are accessible to novice programmers.
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We selected the archetype with the most existing sensor networking applications as the

starting point for archetype-specific language design. This archetype contains the largest

number of the applications described in Chapter II. It corresponds to applications that

periodically sample and transmit raw data, or filter and aggregate data before transmitting

them to a base station from a stationary, homogeneous network. We will refer to this as

“Archetype 1”. This section presents the proposed language, WASP, as well as its compiler

and simulator.

3.2.1 Language Overview

Among the existing languages, those based on database query languages (e.g., Swis-

sQM and TinyDB) provide the most appropriate high-level abstractions for Archetype

1. However, their support for temporal queries may be difficult to grasp for novice pro-

grammers, because the database abstraction represents a snapshot of the network that only

contains current data (the default table named sensors). In order to use historical data,

a storage point must be explicitly created in the program. The storage point provides a

location to store a streaming view of recent data. For example, in TinyDB the code in

Figure 3.1 creates a storage point for the most recent eight light samples. For a simple

application that compares the current sensor reading with previous readings, developers

need to issue a query that joins data from the sensors table and the created storage point.

Joins require complex query construction that even experienced database users often get

wrong. Our experimental results indicate that many novice programmers have great diffi-

culty using joins correctly (see Section 3.2.3 for details). Instead of forcing programmers

to explicitly create buffers to store temporal data, WASP makes both historical and current

data directly accessible to programmers.

To achieve easy access to both current and historical data, WASP lets programmers



23

CREATE STORAGE POINT
recentlight SIZE 8
AS (SELECT nodeid, light

FROM sensors
SAMPLE PERIOD 10s)

Figure 3.1: TinyDB storage point.

view the network as distributed data arrays. Each array corresponds to a node-level vari-

able and stores the stream of a particular type of data. Newly sampled data or computed

results are inserted at the top of the array, which is indexed from 0. Older data can thus

be referenced by indexing into the array. Another major difference between WASP and

existing query languages is that WASP lets users specify an application at two levels:

node-level and network-level. Operations that only use constants and data generated on

one node may be specified at node-level. Data transmission and data aggregation are spec-

ified at network-level. The two features permit local data processing while retaining the

high-level abstraction that hides the mechanics of routing and communication.

WASP Language Construct

A WASP program is composed of two segments. The node-level code segment, ini-

tiated with the keyword “local:”, specifies single node behavior. The network-level code

segment, initiated with the keyword “network:”, specifies how data are aggregated through

the network and gathered at the base station.

The node-level code segment specifies two types of functionalities: sampling and data

processing. The sampling specification indicates the type of sensor data sampled and the

associated sampling frequency. The data processing specification indicates how the raw

sensed data are processed to generate other data. It may be used for data interpretation,

unit conversion, local event detection, etc. The syntax is shown in Figure 3.2. Keywords
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LOCAL:
SAMPLE sensor EVERY t t_unit INTO buffer
SAMPLE sensor INTO scalar
data_1 = function(args) EVERY t t_unit
data_2 = function(args)
data_3 = arithmetic_expr EVERY t t_unit
data_4 = arithmetic_expr
NETWORK:
COLLECT field1, field2, ...
WHERE node-selection-conditions
GROUP BY node-variable-list
HAVING group-selection-conditions
DELAY t t_unit

Figure 3.2: Example WASP template.

are in uppercase. Variables and parameters are in lowercase.

Sensor describes the type of sampled data. Buffer, scalar, and data i are

user-defined variables. Programmers can view a variable as an infinite array that stores a

time series. Data items in the array can be referred to via indexing. Index 0 represents

the most recent datum, while index n represents the nth most recent datum. A data se-

quence can be referred to using two indices, indicating a range. Fox example, buffer[0:9]

returns the most recent 10 elements. Data types of variables are not specified by users,

but inferred by the compiler. If a sampling operation or data computation is periodic,

EVERY t t unit should be specified at the end of the statement to indicate the period.

If absent, this implies that the operation need only be done once. Function is selected

from a library of built-in aggregation functions used in node-level code. They aggregate

data across time on each individual node. The execution order of the statements is deter-

mined by the data dependency. Programmers can write them in any order. The syntax of

node-level code is designed to be straightforward and readable by novice programmers.

The SAMPLE clause is similar to English. The other instructions are based on assignment

statements that even novice programmers are likely to have used when writing mathemat-
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ical expressions.

The network-level code segment lets programmers view the entire sensor network as

a table and use collective operations to extract desired data. Instead of containing only

the current sensor readings, as in TinyDB, this table contains the most recent data for all

variables defined in the node-level code segment. Although the table represents a snapshot,

its columns may contain variables representing or derived from temporal data. Therefore,

only one table exists in WASP; programmers need not create tables or query from multiple

tables. Network-level code has a syntax that is similar to the TinySQL language used in

TinyDB. It consists of collect-where-group by-having-delay clause supporting selection,

projection, and aggregation.

WASP has a DELAY statement for specifying maximum data collection latency. The

syntax is “DELAY t t unit”. Parameter t t unit indicates the maximum delay

from data item generation to arrival at the base station. The syntax of the clause for

network-level code is more constrained than TinyDB. The data following the select key-

word can either be a node-level variable or an aggregation function. Expressions are not

allowed. In contrast with TinyDB, WASP network-level code does not specify sampling

frequency. Frequency should always be specified in the node-level code segment, together

with variable definitions. The data transmission frequency can be inferred from the data

collection period.

WASP Programming Template and an Example

A template for WASP programs is given in Figure 3.2. Upper-case words are com-

mands. Lower-case words are descriptions of parameters at the corresponding locations;

they will be replaced with variables, functions, and expressions by programmers.

We now use an example to demonstrate how to write a sensor network program in
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LOCAL:
SAMPLE temperature EVERY 10 min INTO tbuf
SAMPLE pressure INTO pbuf
height = pbuf / 100 + 2
temp_level = AVG(tbuf[0:5]) EVERY 1 hour
NETWORK:
SELECT height, AVG(temp_level)
GROUP BY height

Figure 3.3: Example WASP code.

WASP. Assume we want to deploy sensor nodes that are able to sense temperature and

barometric pressure around a tree to study its microclimate. The nodes sample temperature

every 10 minutes. Each node first averages its own temperature samples within one hour,

then the average temperatures across nodes are averaged within height levels. The height

level of a node is computed from the pressure level as follows: height = pressure/100 +

2. Sensor nodes are stationary, so we only need to compute node height levels once. The

application is required to sample the average temperature at each height level every hour

and transfer the results to the base station.

Compiler and Simulator for WASP

The WASP compiler translates a WASP program into NesC code. The generated NesC

code is then compiled to executables with ncc, the NesC compiler for TinyOS. The parser

is written with PLY [106], a Python implementation of the compiler construction tools

lex and yacc. The implementation of Archetype 1 requires the use of modules for tim-

ing, communicating, synchronization, and routing, which we implemented as a library

that is automatically accessed by the generated code. We constructed a NesC template

for Archetype 1 that embodies the partial implementation required for any application in

the archetype. The Collection Tree Protocol (CTP), implemented as TinyOS components,

is used for the routing and data collection. In the template, application-dependent code
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segments are marked with special symbols, which are replaced with NesC statements gen-

erated by the WASP compiler. The replacement is automated with a Python script. During

compilation, variables in the WASP program are converted to arrays or scalars with explicit

data types and the minimum sizes of arrays are computed. The sampling instructions are

converted to NesC instructions to control the sensor components. Other node-level instruc-

tions are converted to tasks. The period specification in the WASP program is converted

to instructions to set timers. The network-level code is converted to data transmission and

in-network data aggregation instructions in NesC. The compiler has been tested with the

three applications from our user study (refer to Section 3.2.2 for more details). The gen-

erated code was run on a multi-hop network composed of four TelosB nodes. We did not

yet work on compiler optimization of performance and power.

To support our user study, we also implemented a discrete event simulator for WASP in

Python. The parser is modified to generate Python code that creates sampling, processing,

and data collection events. The simulator is only used to check functional specification,

not implementation or reliability. Therefore, it emulates a perfect network: every operation

is instantaneous; there is no node failure or communication loss. The sensor readings are

randomly generated in the range from 0 to 1,023. A user interface was also developed for

WASP, providing a simple programming environment for editing, saving, compiling, and

simulating WASP programs.

3.2.2 User Study

To determine the impact of using WASP on programmer success rates and development

times, and to assess the value of archetype-specific languages, we conducted a user study

that tested 28 novice programmers using five different programming languages. This sec-

tion describes the protocol of our user study. The materials used in the study are available
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on our project website [4].

Questions

The user study was designed to address these questions:

1. What impact does the use of specialized languages have on programmer productiv-

ity, as quantified by success rate and development time?

2. What impact does the use of programming templates have on productivity?

3. Is the node-level or the network-level programming model better for novice pro-

grammers?

4. Can novice programmers efficiently and correctly use WASP?

5. What is the most appropriate language for the most frequently encountered archetype?

6. What are the primary difficulties novice wireless sensor network programmers have

with programming languages?

Languages Under Test

We used the following criteria when selecting languages for testing and comparison:

(1) the language is designed to simplify sensor network programming and it provides high-

level abstractions; (2) it was designed to support applications that carry out periodic data

sampling and transmission, i.e., Archetype 1; (3) it has been implemented and the as-

sociate tool chain is publicly available. Five programming languages were selected for

comparison: TinyScript, TinyTemplate, TinySQL, SwissQM, and WASP. Three of them

(TinyScript, TinySQL, and SwissQM) are from existing work with released software tools.

TinyScript [69] is a general-purpose, node-level, event-driven programming language

used for the Maté virtual machine [68]. Programmers write imperative code for event han-
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dlers. We made two major changes to create a specialized version of TinyScript, called

TinyTemplate, for the most frequently encountered archetype. First, we pruned the li-

brary and handlers of TinyScript to only contain functions and events that are related to

the target archetype. Second, we provided a programming template. The template is a

parameterized example program that implements periodic sampling and data aggregation;

comments in the program indicate the variables and instructions that should be replaced

for different applications. Expecting that it will be extremely difficult for novice program-

mers to implement multi-hop communication within reasonable a amount of time, we let

the test subjects of TinyTemplate and TinyScript assume a one-hop network structure, in

which every node can directly communicate with the root node. Even so, the success rates

were extremely low for these two languages.

TinySQL [82] is the SQL-like language used in TinyDB. Programmers view the whole

network as a table, with each row indexed by node identification number. User-defined

storage points are used in this language to buffer temporal data. SwissQM [95]1 is a pro-

gramming interface for a query virtual machine. The query language for SwissQM is

similar to TinySQL, but instead of letting users write textual code, SwissQM provides a

graphical interface. The interface makes composing queries convenient, but it also con-

strains the supported applications; temporal queries cannot be supported by this interface.

In our study, it was our goal to compare languages and minimize the effect of other

factors such as documentation and programming environment. We therefore rewrote the

tutorials for these languages (these tutorials are available at our project website [4]). The

published documents [94, 81, 70] were generally written for programming experts and

proved to be very difficult for novice programmers to understand. Programming templates

1The new version had not been released at the time we designed our experiments; version 1.0 was used.
This is unlikely to have significantly effected results. Although the new version of SwissQM allows users to
write query code, temporal queries are not supported.
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were provided for WASP, TinySQL, and TinyTemplate. The graphical interface of Swis-

sQM is considered to be a template.

In practice, system design and programming are interactive and iterative processes.

Hence, feedback to test subjects is necessary for the user study to approximate real-world

circumstances. Asking users to work with a collection of sensor nodes has the potential

to introduce problems that are orthogonal to language design and thereby reduce the dis-

cerning power of the study. In order to focus on measuring the impact of the language on

productively writing functionally correct code, we associated each language with a sim-

ulator. A network composed of four nodes was simulated for each language. These sim-

ulators run in real-time, and emulate ideal sensor networks without delay or failure. The

TinyOS simulator, TOSSIM [71], was used for TinyScript, TinyTemplate, and SwissQM.

We implemented a simulator in Python for TinySQL2. The TinySQL code is translated

into iterative database queries that are passed to a database server. The creation of storage

points is converted to creation of view points. We implemented a discrete event simulator

for WASP in Python. Though the implementation of the simulation environments for these

languages differ, the user interfaces are quite similar.

User Recruitment

Our 28 test subjects are from a variety of fields: science, engineering, arts, etc. Ten

of them have no programming experience. The others, mostly students in engineering

fields, have different levels of experience with Fortan, C, and Matlab. We claim that the

level of programming experience for this population is representative of sensor network

application experts.

2We could not get TinyDB working and the released tool does not support the semantics for temporal
query, so we wrote a new simulator for it.
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Study Structure

Our study procedure is designed to permit fair comparisons among languages while

maintaining short duration studies. Each of the five languages, except SwissQM, is evalu-

ated based on use by five novice programmers. SwissQM cannot support Task 3 so it was

only tested with three test subjects. By randomly assigning languages to participants, each

language was tested by a combination of participants with different background and pro-

gramming experience. First, the test subjects are introduced to wireless sensor networks

via a short description. This gives test subjects a basis for understanding the programming

languages and tasks. Next, the test subjects are given 30 minutes to read a tutorial for the

language under test, and to familiarize themselves with the programming environment.

After that, they are given the description of two sensor network programming tasks;

40 minutes are permitted for each one. The description of the second task is given after

the first is complete, or after 40 minutes have elapsed. The test subjects were permit-

ted to notify the test administrator when they think they have a correct solution. Finally,

test subjects answer a survey to provide feedback on the language, tasks, programming

environment, etc. The screen is recorded during the study, allowing us to examine the in-

teraction between the programmers and the programming environments. During the study,

the test subjects are permitted to ask the test administrator questions about the tutorials or

the task descriptions. However, the administrator does not answer questions related to the

implementation of the tasks. Though we used three tasks and five languages for the user

study, each test subject was asked to complete only two tasks in one language, in order to

keep the study short enough for participants. The selection of language and tasks for each

test subject was random. To eliminate ordering effects, we randomized the order of the

tasks.
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Tasks

We selected three tasks that are representative of the target archetype and span different

levels of difficulty. These tasks are closely related to the real deployed sensor network

applications. Task 1 is a basic environmental monitoring application that transmits raw

sensor data to a base station. Task 2 requires node grouping and data aggregation. Task

3 requires temporal processing. SwissQM is inherently unable to support Task 3. The

descriptions of the tasks, which are identical to those provided to study participants, follow.

• Task 1: Sample light and temperature every 2 seconds from all the nodes in the

network. Transmit the samples with their node identification numbers to the base

station [108, 49, 31].

• Task 2: Sample light and temperature every 3 seconds from all the nodes in the

network. Collect average temperature readings from nodes that have the same light

level. Light levels are computed by dividing raw light readings by 100 [136].

• Task 3: Sample temperature every 2 seconds from all the nodes in the network.

Transmit the node identification numbers and the most recent temperature readings

from nodes where the current temperature exceeds 1.1 times the maximum temper-

ature reading during the preceding 10 seconds.

3.2.3 Experimental Results

The user study evaluated five programming languages when used by 28 novice pro-

grammers. This section presents and analyzes the study results.

Results of User Study

We used success rate and time-to-success to quantify programming productivity. Ta-

ble 3.1 shows the success rate and the average time-to-success for each language and task.
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Table 3.1: Results of User Study

Language
Success rate Develop time (min) User feedback (0–7)

T1 T2 T3 T1 T2 T3 Tutorial Task Env. Understand Easy
SwissQM 3/3 3/3 N.A. 5.7 11.3 N.A. 5.7 5.7 5 5.7 6

WASP 2/2 2/4 2/4 16 31 29.5 4.4 5.4 5.8 4.2 4.6
TinySQL 3/4 2/3 0/3 17.7 27.5 N.A. 4.6 5.8 5.6 4 4.8

TinyTemplate 1/4 0/3 0/3 34 N.A. N.A. 5.2 5.6 4.6 2.8 3.2
TinyScript 0/3 0/3 0/4 N.A. N.A. N.A. 4.4 5.4 4.2 3.8 3.2
WASP2∗ 3/3 3/4 2/3 3 9.7 23.5 4.4 6.2 5.8 5.2 4.8

∗WASP2 is presented in Figure 3.2.3.

The success rate is shown in the form of n/m, meaning n participants out of m succeeded

within 40 minutes. The third column shows the average time-to-success. The success rates

of TinyScript and TinyTemplate were low; only one test subject completed the simplest

task with TinyTemplate. TinySQL and WASP have similar productivity for Tasks 1 and

2, but differ for Task 3. None of the test subjects completed Task 3 with TinySQL, while

two out of four succeeded at Task 3 with WASP. The average success rate for TinySQL is

47.2%. The average success rate of WASP is 66.7%. SwissQM has 100% success rate and

the shortest completion time for Tasks 1 and 2. However, it does not support Task 3.

The failure of test subjects to complete any tasks with TinyScript suggests that TinyScript

may be less appropriate for novice programmers than the other types of languages eval-

uated. When reviewing mistakes programmers made during the study, we observed two

significant obstacles encountered by TinyTemplate users. First, users had trouble with the

event-driven programming model; most participants ended up using the wrong event han-

dlers. In addition, many users fell back to programming in an imperative manner. They

attempted to specify periodic events with a for loop. Second, novice programmers had

trouble implementing node communication. None of the TinyScript users wrote the piece

of code required for communication between two nodes (this requires calling the bcast

function to send the data in a buffer, and calling the broadcast function in the broadcast

handler to retrieve the data). These issues hindered most programmers from further un-
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derstanding the programming template provided in TinyTemplate. The difficulty of using

TinyScript for novice programmers was also demonstrated in the BASIC study [89] by

Miller et al., which used simpler tasks. The increased success rate with TinyTemplate

relative to TinyScript suggests that a programming template can ease development with a

general-purpose language. It is intuitive for WASP and TinySQL to have similar results

for Task 1 and Task 2, as the solutions for these tasks are similar in both languages. WASP

improved the success rate of Task 3 from 0 to 2/4 because it allows simpler semantics

for accessing temporal data. The short development times of SwissQM for Tasks 1 and 2

can be attributed to two features: (1) SwissQM is well specialized to these tasks and (2)

SwissQM provides an easy-to-use graphical user interface.

In addition to the objective metrics of success rate and time-to-success, we also asked

participants to provide their feedback on the study-related factors. They were asked to

use a number, on the scale from 1 to 7, to indicate their agreement with the following

statements (1 means strongly disagree and 7 means strongly agree):

1. The tutorial is easy to understand.

2. The descriptions of the tasks are clear.

3. The programming environment is friendly.

4. I understand this programming language.

5. The programming language is easy to learn and use.

Statements 1, 2, and 3 help us to identify problems caused by difficulty in understand-

ing the manual or the task descriptions. They also provide additional evidence that may

help to better understand the success rate and time-to-success results. For example, if users

of one language had difficulty understanding the given tasks but users of another language
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understood the tasks well, we could not conclude that the difference in productivity is due

to the accessibility of these languages. We tried our best to avoid bias caused by factors

other than the languages, although we could not totally eliminate biases resulting from

differences in the released tool chains of existing languages.

The user feedback columns in Table 3.1 show the average ratings for each language

for the aforementioned five questions. The five rightmost columns correspond to the state-

ments listed above. According to the results, all participants understood the tutorials and

tasks. TinyScript and TinyTemplate have less friendly programming environments, but this

is not the major reason for their low success rates. Screen recordings did not reveal that

participants encountered any particular difficulty with the programming interface. State-

ments (4) and (5) focus on user experience with the languages. Contrary to our expecta-

tions, the TinyScript users think they understand the language better than TinyTemplate

users. This may seem counter-intuitive because the TinyTemplate language is a simplified

version of TinyScript. The simplest explanation we have found for this irregularity is that

TinyScript users are over confident in their understanding of the language. There is some

evidence for this conclusion; several TinyScript users made the error of using the uart

function to send data to the base station. On the contrary, the TinyTemplate users were

able to see that the correct implementation for data collection is more complicated, thanks

to the template. The ratings for the last statement order languages by perceived difficulty.

This ordering is consistent with actual productivity: in general, the harder a language is

perceived to be, the lower its success rate.

Enhanced Version of WASP

From the user study, we observed that, although appropriate programming idioms for

Tasks 1 and 2 are similar for SwissQM and WASP, the average completion time for WASP
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Figure 3.4: User interface of WASP2.

is almost 3× that of SwissQM. By studying screen recordings, we found that test subjects

spent a significant amount of time locating and correcting syntax errors in WASP. This

was not the case for SwissQM because its interface prohibits many syntax errors; part of

the programming is done via selecting from lists and checking radio buttons. The WASP

interface provides a text window into which arbitrary text may be entered to compose a

program. Program errors are not detected until the syntax check or simulation is started

by the users by clicking the associated button. To investigate the impact of user interface

on sensor network programming by novice programmers, we designed WASP2. WASP2

is linguistically similar to WASP, but the user interface has a number of enhancements.

Instead of letting users input arbitrary code, WASP2 provides dialogs for composing

different types of instructions. The dialogs are equipped with lists containing already-

defined variables, validators, auto-completers, syntax checkers, and pop-up warning mes-
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Figure 3.5: User interface of TinyScript.

sages to accelerate instruction editing, prevent user error, and detect syntax errors as early

as possible. The widgets in the interface are tagged with pop-up windows displaying ap-

propriate descriptions and help so that programmers do not need to frequently refer to the

tutorials. The WASP2 interface is shown in Figure 3.4. We repeated the original study

protocol for WASP2 with another five novice programmers. The results are shown in

Table 3.1. Compared with WASP, WASP2 improves success rate by 20.8%, and reduces

average development time by 58.2%. WASP2 results in better productivity than SwissQM:

20.8% improvement in success rate and 25.3% reduction in average development time for

Tasks 1 and 2 (recall that SwissQM does not permit the temporal queries required for some

tasks in Archetype 1, e.g., Task 3).

Useful Language Features

Our observations during the user study, and its results, suggest that the following as-

pects of our sensor network programming language are most useful in improving program-

mer productivity.
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• The network-level abstraction reduces programming effort; it allows programmers

to apply operations on data located on different sensor nodes without being con-

cerned about where the operations are executed and how the data are migrated in

the network. This feature also distinguishes SwissQM, TinySQL, and WASP from

TinyTempalte and TinyScript. The latter two have low success rates partially be-

cause the programmers need to explicitly implement node-level communication.

• The combination of network-level and node-level programming was helpful instead

of confusing. All test subjects of WASP and WASP2 easily identified which code

segments they should use for different data processing operations. Node-level pro-

gramming allows programmers to specify temporal data processing more easily

compared to TinySQL.

• Programming templates helped programmers understand and use the language more

easily. Many test subjects indicated that the templates were helpful and created

their programs by modifying the template. Note that templates are only useful when

the underlying language provides appropriate abstractions for sensor networks. For

example, although we provided a template for TinyScript (TinyTemplate), most test

subjects still have trouble understanding the language.

• The enhanced graphical user interface that enables guided and constrained program-

ming greatly improves productivity; it reduces the chance for programmers to make

grammar errors and assists them in identifying programming errors. Note that this

feature was effective only when the key concept of the language could be grasped by

the programmers. Even though TinyScript also provides a graphical user interface

with similar functionality (Figure 3.5), it is still difficult to use due to the barrier

introduced by the node-level and event-driven programming style.
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In summary, an appropriate abstraction model of a sensor network is the key factor

for a programming language to be accessible to novice programmers. Based on such an

abstraction, programming template and well-designed user interface can further improve

programming efficiency.

Statistical Analysis of the Results

The goal of the user study is to compare programming languages in terms of success

rate and completion time. Examining Table 3.1 is of some value, but it is possible that

some of the observed trends could be the result of random variation. In this section, we

use statistical tests to determine which trends are statistically significant.

Some languages may have higher success rates and shorter completion times than other

languages. Statistical tests are used to determine the probability of these hypotheses being

correct, based on a limited set of measurements. The success rates and completion times

for one language have distributions. We will test the probability that the means of the dis-

tributions for one language exceed those of another. The hypothesis we hope to support is

called alternative hypothesis. An example alternative hypothesis is “the mean completion

time using WASP2 is shorter than that using WASP”. The corresponding contradictory

null hypothesis is “the mean completion time of WASP and WASP2 are the same.” The

outcome of a statistical test is to reject or not reject the null hypothesis. We will apply both

the two-tailed unmatched paired t-test and rank sum test [88].

The t-test and rank sum test are used to compare two populations of independent ran-

dom samples. The t-test assumes the populations have Gaussian distributions, while rank

sum test does not make assumption about the distributions. Generally, with stronger as-

sumptions, we can draw stronger conclusions. Weaker assumptions allow higher confi-

dence in the conclusions, but allow fewer conclusions. We suspect, but are uncertain, that
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Table 3.2: Statistical Test of Success Rate
Languages T-test Rank sum

WASP vs. TinySQL 0.542 1.000
WASP2 vs. WASP 0.511 0.600

WASP vs. TinyTemplate 0.035 0.100
WASP vs. TinyScript 0.016 0.100

the distributions are normally distributed. Therefore, we show the implications of both

statistical tests. The t-test and rank sum test both assume that samples are independent of

each other. In our case, one sample corresponds to the results of one user implementing

one task. In our user study, each test subject completed two tasks. We assume that the

ordering effects (doing the first task may potentially improve the user’s performance on

the second one) of tasks assigned to the same test subject is negligible. Therefore, the

two tasks for the same individual are treated as two independent samples. The observed

significance value (p-value) is used to report the extent to which the test statistic agrees

with the null hypothesis. A smaller p implies more evidence to reject the null hypothesis.

T-Test on Success Rate

The success rate is computed as the percentage of test subjects who have completed a

particular task using a particular language. In this case, each language has three samples

corresponding to the three tasks. The p values are shown in Table 3.2. “A vs. B” in the first

column corresponds to the hypothesis “the mean of success rate for language A is larger

than that of B”.

Rank Sum Test on Success Rate

This test assumes only that samples are independent. The results are shown in Ta-

ble 3.2. The results indicate that, with high confidence, we can conclude (1) WASP has a

higher success rate than TinyScript and TinyTemplate; (2) the mean completion time for

Task 1 using SwissQM is longer than that using WASP2; and (3) the mean completion
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time for Task 2 using WASP is longer than that using SwissQM.

T-Test on Completion Time

Completion times for the three tasks are separately considered because the tasks have

different complexities. Mixing samples of different tasks would introduce bias because it

was not guaranteed that each language was tested with the same set of tasks. This test is

for the hypothesis that, on average, programmers require more time to complete the task

with one language, than with another. There are two caveats. First, the t-test assumes that

samples are from normal distributions and the standard deviations of the two distributions

are the same. Second, due to the time limit of the study, completion times for users who

had not finished within 40 minutes are unknown. Therefore, we estimate the completion

times for all failed cases to be 50 minutes. This number is a lower bound obtained via

investigating the screen record of all failed tests. Our estimation is conservative and it may

make difficult languages look easier than they are3. The p values are shown in Table 3.3.

“A vs. B” in the second column corresponds to the hypothesis “the mean of completion

time for language A is larger than that of language B”. The statistically significant results

are highlighted.

Rank Sum Test on Completion Time

The rank sum test does not make any assumption about the distribution of the com-

pletion times. Ranks are assigned to samples in order of decreasing completion times.

Samples corresponding to incorrect implementations are given equal ranks that are higher

(worse) than those of all correct implementations. The p values are shown in Table 3.3.

3This may introduce bias, but will bias against the hypothesis that our programming language is easier
to use than others.
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Table 3.3: Statistical Test of Completion Time
Task Languages T-test Rank sum

1

TinySQL vs. WASP 0.616 0.667
TinyScript vs. WASP 0.026 0.200
TinyTemp vs. WASP 0.029 0.133
WASP vs. WASP2 0.212 0.200

TinyScript vs. TinyTemp 0.437 1.000
WASP vs. SwissQM 0.299 0.800
SwissQM vs. WASP2 0.039 0.100

2

TinySQL vs. WASP 0.600 0.914
TinyScript vs. WASP 0.212 0.571
TinyTemp vs. WASP 0.213 0.571
WASP vs. WASP2 0.123 0.200

WASP vs. SwissQM 0.083 0.067
SwissQM vs. WASP2 0.517 0.914

3

TinySQL vs. WASP 0.289 0.571
TinyScript vs. WASP 0.210 0.429
TinyTemp vs. WASP 0.289 0.571
WASP vs. WASP2 0.572 0.571

3.2.4 Lessons Learned

Conducting user studies allowed us to test our hypothesis, evaluate and improve our

design, and develop new ideas that would not occurred to us if we were isolated from

users. Unfortunately, user studies quickly consume budgets and time, so it is desirable to

carefully design them. This section summarizes the lessons we learned and our observa-

tions.

• Conduct a small-scale test study first to minimize unexpected problems in the later,

large-scale study. A test study needs not be as strict as the formal study. We tested

several tasks with EECS students and our collaborators before the study, though the

final study requires randomly recruited strangers who are not programmers. Our

test study revealed some bugs in the programming tools and helped us determine a

reasonable time limit for the large-scale study.

• Observe the user and record the study without interrupting or intervening. Having a
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record of the user’s behavior allows later analysis of anomalies. During our study,

the screen was recorded, the observer took notes on the questions users asked, and

users could sketch on draft papers and or mark anything in the language manual.

These records allowed us to determine where users become stuck and what mistakes

they make.

• Try to consider all factors that may affect your study results. We were interested in

the differences among programming languages, so we eliminated the effects intro-

duced by the working environment by using the same editor and similar simulators

for every test.

• End user behavior can be very different from designers expectations.

• Programming examples are helpful to novice programmers. Many test subjects in-

dicated that they found the templates helpful and most of them suggested including

more examples in the language tutorials.

• Event-driven models, explicit programming data communication, and table joins are

hard for novice programmers to grasp.

3.3 Specification Languages for Design Costs and Requirements

The WASP language only lets designers specify the functionality of a sensor network

application. An application specified with WASP can map to multiple implementations

that have different performance and costs. A designer usually have a handful of attributes

to optimize; the attributes are used to determine whether one design is more preferable

than another. Different applications may have different requirements. For example, a

sensor network deployed to monitor a wild fire is expected to function on battery for at

least three months during the fire season, while a sensor network deployed to monitors a
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Figure 3.6: Relation between effective cost and value of a cost metric.

bridge is expected to have a lifetime as long as possible. The specification language of

application requirements lets the designer describe their criteria for an optimal design.

The design requirement specification is based on the definition of the design problem.

The problem definition, as well as the specification language, should be general flexible

to support various application requirements, simple enough to allow application expert to

understand and use, and precise enough for the design tool to determine an optimal design.

In addition, the set of design attributes should represent the interests of the application

experts, instead of requiring the designer to manually convert ones design goal to another

criteria. For example, an application experts should be able to directly specify the required

unattended lifetime of a sensor network, instead of requiring them to convert that into the

power consumption of a sensor node.

The specification for application requirements is composed of a list of specifications

for different cost metrics, in the form of “COST soft-constraint hard-constraint weight”.

COST is the name of a cost metric, selected from a pre-defined set of cost metrics. Soft

constraint is the optimization threshold. It means that when COST is lower than soft
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constraint, there is no need to optimize it. Hard constraint specifies a threshold the COST

must not exceed. A solution with a COST larger than hard constraint is considered as

infeasible. Weight suggests how significant the COST contributes to the total cost. In other

words, if COST has to be worse than soft constraint then optimize it with the specified

weight. Weight (in the range of 0 1) indicates the importance of different optimization

objectives when there are multiple. Figure 3.6 demonstrates the meaning of a specification

with a figure plotting the effective cost as a function of a single cost metric. When the cost

metric is smaller than soft constraint, its contribute to the effective cost is zero. When it is

larger than soft constraint, the effective cost linearly increases with a rate equal to weight.

When it exceeds hard constraint, it is infinite.

When soft constraint is 0 and hard constraint is Inf (infinite), the corresponding cost

metric becomes a pure optimization objective. When hard constraint equals soft constraint

or weight is zero, it becomes a pure constraint. For example, “PRICE 100 1000 0.8” means

that the total price must be lower than 1000, meanwhile, if it has to be larger than 100, then

try to minimize it with weight 0.8. If the designers does not include a cost metric in the

specification, it means that it needs not to be optimized. It is essentially the same as “COST

Inf 0 0”. The specification for value metrics that are to be maximized is the same.

We leave the discussion of how the design tool constructs a single optimization objec-

tive as a function of individual costs to Chapter VII.

3.4 Conclusions

Application-level specifications languages that are accessible to novice programmers

have the potential to open sensor network design to application experts. In this chapter,

we have described a high-level language for the most frequently encountered archetype.

Our user study of 28 novice programmers using five programming languages indicates that
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archetype-specific languages have the potential to substantially improve the success rates

and reduce programming times for novice programmers compared with existing general-

purpose and/or node-level sensor network programming languages. Our language, WASP,

increased the success rate by 1.6× and reduced average development time by 44.4% com-

pared to other languages. We have also described a definition of a sensor network design

problem and the corresponding specification language for design requirements.



CHAPTER IV

Simplified Programming of Faulty Sensor Networks via
Code Transformation and Run-Time Interval

Computation

Detecting and reacting to faults is an indispensable capability for many wireless sen-

sor network applications. Unfortunately, implementing fault detection and error correc-

tion algorithms is challenging. Programming languages and fault tolerance mechanisms

for sensor networks have historically been designed in isolation. In this chapter, we de-

scribe an extension to the WASP language described in Chapter III to simplify the design

of fault-tolerant sensor networks. We describe a system to make it unnecessary for sensor

network application developers and users to understand the intricate implementation de-

tails of fault detection and tolerance techniques, while still using their domain knowledge

to generate effective fault detection, error correction, and error estimation mechanisms.

The FACTS system we have developed translates low-level faults into their consequences

for application-level data quality, i.e., consequences application experts can appreciate and

understand. We implement this system by extending our sensor network programming lan-

guage, WASP; its compiler and runtime libraries are modified to support automatic gener-

ation of code for on-line fault detection and tolerance. This code determines the impacts of

faults on the accuracies of the results of potentially complex data aggregation and analysis

47
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expressions. We evaluate the overhead of the proposed system on code size, memory use,

and the accuracy improvements for data analysis expressions using a small experimental

testbed and simulations of large-scale networks.

4.1 Introduction

It is important for a sensor network program to be capable of detecting and reacting to

faults. Sensor nodes are composed of fault-prone components and they often operate in

harsh and time-varying environments. Experience from prior deployments [134,63,49,13]

has demonstrated that deployed nodes can fail or produce erroneous results. A fault is an

incorrect state of hardware or software resulting from failures of components, physical

interference from the environment, or incorrect design. A sensor node may experience a

fault when water leaks through its package and damages sensors. A network communi-

cation link may experience a fault in the presence of radio interference. A system failure

occurs when faults prevent the system from providing a required service. Embedding fault

detection, fault recovery, and error estimation functionalities in a program make it more

robust and allow more accurate interpretation of data gathered by the application.

There are many challenges to detecting and reacting to faults in a wireless sensor net-

work. (1) Distributed system architectures generally increase the difficulty of fault toler-

ance. (2) Fault detection and correction requires communication, which generally imposes

high energy overhead in wireless sensor networks. (3) Fault detection and correction algo-

rithms increase program complexity, thus leading to a higher probability of software errors.

(4) Different applications may have different fault tolerance requirements and manifesta-

tions.

Many researchers have proposed methods for fault detection, fault correction, and net-

work diagnosis for sensor networks [60,26,76,77,112,99,47]. These technologies may be
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readily used by experienced sensor network developers. However, it requires tremendous

effort for novice programmers to learn and use these techniques, especially in the context

of wireless sensor network design.

4.1.1 Design Goals and Contributions

Reliability is a central concern for wireless sensor networks, and developing fault-

tolerant distributed applications is challenging, especially for those with professions other

than software engineering, i.e., most people with a need for distributed sensing. Our goal

is to combine high-level programming languages and automatic fault-aware code transfor-

mation techniques to empower novice programmers to develop sensor networks that can

operate reliably, potentially in harsh environments. Our work is based on three insights.

(1) Novice programmers tend to assume a fault-free system during programming, e.g.,

corner cases are often ignored by beginners. (2) Application experts mostly care about

application-level performance; they should be informed about the impact of errors on the

end products of an application, but reporting every detail about low-level sensor network

faults may impose great burden with little value. (3) The knowledge of application ex-

perts about expected behaviors and environmental conditions can be used to allow more

effective fault detection and correction.

We have designed, implemented, and evaluated a system, called FACTS (Fault-Aware

Code Transformation for Sensor networks), to simplify programming faulty sensor net-

works. FACTS hides faults from programmers but indicates the impact of low-level faults

on application outputs, i.e., the end results of data processing expressions in the application

specification. We implement FACTS by extending an existing high-level programming

language for sensor networks. The current design of FACTS focuses on data-acquisition

applications and sensor data faults. Programmers provide specifications of application



50

logic as well as expected environmental conditions. The compiler automatically generates

fault-aware code to which fault detection, error correction, and error estimation functional-

ities have been added. During network operation, sensor faults are detected by identifying

sensor readings that fall outside of application-specific ranges. In case of sensor faults,

the ranges of actual data values are estimated using temporal and spatial correlation. The

ranges of end results produced via potentially complex expressions are then computed.

Our work makes three main contributions.

1. We describe an approach to simplify programming of potentially faulty sensor net-

works by automatically generating code for fault detection, error correction, and

error estimation.

2. We develop an error estimation technique to calculate the error bounds for applica-

tion data as a result of faults.

3. We implement this approach in a real system by modifying the compiler and runtime

library for a high-level sensor network programming language.

We evaluate the overhead of our system on code size, memory use, and improvement

in end result accuracy using a small-scale testbed and simulation of larger-scale networks.

The average code size overhead is 15% and the average memory overhead is 3.6%. The

resulting intervals produced by FACTS always contain the actual value, while the fault-

unaware program can produce substantial errors.

Note that our work does not focus on designing new methods for fault detection or

fault tolerance, though it builds upon and benefits from existing fault tolerance techniques.

4.1.2 Related Work

Although the high-level programming languages [82, 95, 17, 98, 9] have reduced pro-

gramming complexity compared to node-level programming languages [39], none provide
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support for fault detection and error correction. Wireless sensor network components com-

monly experience faults [134,63,49] so using fault detection and tolerance techniques has

great value. Even if programmers are willing to deal with greatly increased implemen-

tation complexity, some macroprogramming languages provide no programmer access to

node-level communication primitives, making it intractable for the programmer to imple-

ment fault detection and correction techniques. To the best of our knowledge, only one

sensor network language explicitly supports fault tolerance [47]. It provides declarative

annotations to specify checkpointing recovery strategies. In contrast, our system (FACTS)

does not require programmers to explicitly deal with faults, making it accessible even to

sensing application experts with limited programming experience.

Researchers have identified and classified various types of faults in sensor networks

and proposed numerous approaches for fault detection [60], tolerance [26, 76], diagno-

sis [77,112], and recovery [99,47]. These papers concentrate on minimizing the impact of

faults on system performance and availability. We intend to use them to build useful sensor

network design tools that automatically use these techniques without requiring program-

mers to understand the details of, or manually implement, them. We also propose an error

estimation technique to provide application experts with a more accurate and informative

view of data gathered from a network.

4.2 Fault-Aware Code Transformation for Sensor Networks (FACTS)

We now describe the FACTS architecture.

4.2.1 FACTS System Architecture

The purpose of FACTS is to shift responsibility for the mechanical aspects of fault

management from programmers to the programming language, compiler, and run-time

libraries. In this paper, we focus on data acquisition applications. The left hand side
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Figure 4.1: Separation of reliability concerns.

of Figure 4.1 illustrates how application experts use our system. An application expert

specifies application functionality and expected environmental conditions. FACTS uses

this information to generate an implementation that is capable of fault detection, fault

recovery, and error estimation. The application expert then deploys a network running

the generated code. FACTS indicates the application-level impact of faults, i.e., the error

range for the end results of potentially complex data processing expressions, while hiding

component-level implementation and fault details from the application expert.

We argue for focusing on the high-level implications of faults for three reasons: (1)

data quality is important to application experts; (2) detailed information about low-level

faults (e.g., which sensor readings are out of range) is generally overwhelming instead of

informative to application experts; and (3) providing detailed information about faults is

costly in terms of energy consumption and it is not necessary except for the purpose of

debugging and system diagnosis.

The right hand side of Figure 4.1 shows the system components and their purposes.

The original compiler generates node-level code that implements sensing, data transmis-

sion, and data aggregation algorithms. FACTS provides a runtime library to detect faults

and estimate errors. The FACTS compiler modifies and augments the original compiler
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Table 4.1: Example of Fault Correction
Node 1 Node 2 Node 3 Average

True value (°C) 10 12 14 12
Sensor reading (°C) 10 12 0 7.3

Corrected reading (°C) 10 12 [10, 16] [10.7, 12.7]

in the following ways to generate fault-aware code. (1) It changes the types of some vari-

ables in the program to include extra information about error estimates. (2) It transforms

arithmetic expressions to interval arithmetic expressions so the implications of faults can

be propagated to the end results. (3) It inserts calls to fault detection and error estimation

functions.

We now use an example to demonstrate the key ideas of our approach. Consider the ap-

plication that monitors redwood tree microclimates [137]. Biologists deploy sensor nodes

on a redwood tree to gather temperature and humidity data. The application periodically

samples temperature and humidity, averages readings from nodes at similar heights, and

sends the results to a base station. Assume at one height, there are three nodes with identi-

fiers 1, 2, and 3. Table 4.1 shows an example of data gathered during one sampling cycle.

The second row shows the ground truth values for each node. The third row shows the

sensor readings. Node 3 is faulty: the fault results in an erroneous sensor reading of 0 °C.

Without any fault tolerance mechanisms, the average of the three values in the second

row, 7.3 °C, is returned to the user. Unfortunately, the user is unaware that 7.3 °C is an

erroneous result that underestimates the average temperature by 4.7 °C.

With FACTS, the expert designing the application provides some information about the

environment in a simple format. For example, the expected temperature range is 10–30 °C.

The code generated by FACTS uses this information to detect the fault at node 3. Instead

of using the incorrect value of 0 °C, it indicates that the value is in the range 10–16 °C
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based on historical readings and readings from other nearby nodes. FACTS then propa-

gates this interval through the expressions to produce the value of interest for the network

(i.e., the average), indicating that it is in the range 10.7–12.7 °C. The user is made aware of

the system-level implications of the low-level fault. This error information can be further

used by application experts during their data analysis and help them draw more accurate

scientific conclusions. The actual techniques used in FACTS are more sophisticated than

those considered in this explanatory example. For example, FACTS considers the influ-

ence of spatial and temporal correlation as well as the impact of expressions predicated on

faulty variables.

Our approach has the following features.

1. Application experts do not need to understand the intricacies of sensor network

faults or explicitly manage them.

2. The domain knowledge of application experts is used to allow fault detection and

error estimation, without imposing much additional specification burden.

3. System-level error bounds are provided to application experts to allow more thor-

ough understanding of data.

4.2.2 Specification of Environmental Conditions

Application experts’ knowledge of environmental conditions can be used for two pur-

poses: detecting sensor faults and correcting for faulty sensor readings. Sensed data char-

acteristics can be determined based on sensor specifications and environmental conditions

such as data value range, temporal gradient (change in value per time unit), temporal cor-

relation, spatial variance (change in value per distance unit), and spatial correlation. In

this work we use range, maximum temporal gradient, and maximum spatial gradient to

describe the environmental conditions; however, these concepts can be extended to use
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other parameters. We extend WASP programming language to let programmers specify an

expected range and maximum temporal/spatial gradient for each environmental parameter.

After the programmer provides the application specification, a list of relevant physical pa-

rameters is extracted to produce a template for the programmer to input information about

their expected behaviors. The programmer need only read the template and enter a few

numbers.

4.2.3 Fault Detection and Sensor Error Estimation

In this work, we focus on methods that can be implemented efficiently in software

and detect a commonly occurring class of faults. Although the proposed error estimation

technique will work with any hardware or software fault detection mechanism, we use the

following detection criteria in our FACTS system prototype: (1) are the sensor data within

the expected range? and (2) are the environmental conditions within the operating range

of the sensors?

It is common for faulty sensor nodes to produce abnormal readings. For example,

developers of a habitat monitoring network observed abnormally large or small sensor

readings (light, temperature, and humidity) when water penetrated the enclosure of the

sensor node and affected the power supply [134]. Developers of a redwood tree macrocli-

mate monitoring network associated out-of-range sensor readings with node faults caused

by a drop in battery voltage [137]. Such faults can be detected via range checking.

As sensors cannot work properly in certain environmental conditions, sensor faults can

also be detected by checking whether the current environmental conditions are within the

sensor’s operating range. If either requirement is violated, the sensor reading is deemed

incorrect. Consider an application that gathers light level readings using TelosB sensor

nodes. The S1087 light sensor on TelosB nodes has an operating temperature range of -
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10–60 °C. Both the light and temperature sensor readings are checked to detect light sensor

data faults. A fault is likely to occur if either the light sensor reading is out of the expected

range or the temperature sensor reading is out of the -10–60 °C range. Note that when an

undetected fault occurs in the temperature sensor, we may (conservatively but sometimes

mistakenly) deem the light sensor to be faulty. Faults in sensors on the same node may be

correlated because they share many hardware and software components; the developers of

the habitat monitoring sensor network observed this correlation [134]. Therefore, the false

positive rate due to faults in the sensor monitoring the operating environment is likely to

be lower than would be the case in the absence of sensor fault correlation.

Local error estimation is used to indicate the intervals of actual data elements and ex-

pressions when faults are detected. Faulty sensor readings are estimated based on bounds

on environmental parameters and their spatial and temporal gradients. Data gathered from

a sensor network often change gradually with time and location. Temporal and spatial vari-

ations can be bounded for many applications. We use such bounds to replace erroneous

values with ranges. For example, given a maximum temporal gradient for temperature of

1 °C per minute, the range of a faulty temperature reading can be estimated as 19–21 °C

if the most recent correct reading of 20 °C was taken one minute ago. In other words, in

case of an erroneous reading, the possible temperature range is estimated based on other

data. The FACTS compiler creates data buffers to store historical data. The buffer size

is determined based on the user-specified bounds and sampling periods. For example, if

the temporal variation of temperature is at most 5 °C over one hour and the temperature

sampling period is 10 minutes, then a buffer of size 6 is used.

A bound on spatial gradient indicates the maximum change per meter. Error estimation

using spatial gradients requires knowledge of distances between sensor nodes. If node

locations are known at design time, the locations of nearby nodes can be stored in a table
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Figure 4.2: Design options for error estimation based on spatial data.

and used for error estimation at runtime. If node locations are unknown until deployment,

distances between nodes can be estimated using node localization algorithms [117].

Error estimation using spatial gradients requires data from other nodes and may there-

fore introduce communication overhead. The locations where the implications of faults

are estimated and the amount of spatial data used impact energy overhead and the tight-

ness of the resulting error bounds. Figure 4.2 shows examples of three design options for

a network composed of six nodes. A dotted arrow represents a communication link in the

routing tree, originating from a child node and ending at a parent node. F indicates where

a fault occurs and C indicates where the error resulting from this faulty reading is esti-

mated. The center node has a faulty sensor reading. To simplify explanation, we ignore

error estimation based on temporal changes in this example. Sensor data from the shaded

nodes are used to estimate the interval for incorrect readings gathered by the faulty sen-

sor. A solid arrow indicates the links on which the corresponding design option produces

communication overhead.

In design (a) (in Figure 4.2), the parent node estimates the value interval for the faulty

node by based on the parent node’s sensor value. In design (b), the value interval at the

faulty node is estimated using its children’s readings. In design (c), the value interval at the

faulty node is estimated using all its neighbors’ readings. Design (a) uses only one neigh-

boring node (parent node) for estimation, design (b) uses all children nodes, and design
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(c) uses all neighboring nodes. Design (a) imposes communication overhead on the link

from a faulty node to its parent, design (b) requires every node to always send its own raw

sensor readings to its parent, design (c) requires the faulty node to broadcast requests to

which its neighbor nodes reply with their sensor readings. The more information used in

estimating an interval, the tighter the bound is; design (a) provides the loosest bound with

the lowest communication overhead and design (c) provides the tightest bound with the

highest communication overhead. We choose design (b) in the FACTS system implemen-

tation. This option requires the least modification to the network protocol, and supports

the use of multiple spatial readings for error estimation. Specifically, each node sends the

aggregated results of the subtree it is the root for and its own raw sensor reading.

4.2.4 Error Propagation

The WASP programming language supports node-level data processing functions and

network-level aggregation functions. FACTS computes the errors in expression results

based on the sensor readings they depend on. Specifically, FACTS returns estimated

ranges associated with each requested datum, i.e., every data element in the COLLECT

statement for network-level data gathering and aggregation in a WASP program. As de-

scribed in Section 4.2.3, faulty sensor readings are replaced with estimated ranges. The

errors are then propagated to final results using interval arithmetic. Error estimation for

network-level aggregation results can occur either in the network or at the base station.

The former approach aggregates correct and faulty variables in the network and estimates

the associated error. The latter approach aggregates only correct variables in the network

and forwards faulty variables to the base station, where the error of the final results are

computed. We adopt the former approach in FACTS because it implies smaller data trans-

mission overhead and scales with network size and fault rate.
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Errors caused by faulty sensor readings can propagate to end results via mathematical

operations such as addition. The error estimation problem can be defined as follows. Given

y = f(x1, x2, · · · , xn) and the range of each xi, estimate the range of y. Each xi represents

a potentially erroneous variable. y represents the returned result. This can be solved with

interval arithmetic [90], in which arithmetic operations are applied to operand intervals to

calculate result intervals. Interval arithmetic has been applied to rounding error estimation

and circuit timing analysis. In contrast to these uses, maintaining low overhead is more

important for our (on-line) application because error estimation may execute on energy-

and time-constrained sensor nodes. Fortunately, for the built-in functions supported by the

WASP programming language, it is easy to find the range of an output given ranges of in-

puts. For example, the frequently used aggregation functions such as MAX, MIN, and AVG

are all monotonic, allowing the extremes of an output to be computed directly by applying

the operation on extremes of inputs. The mathematical expressions and functions used

in the majority of published wireless sensor network deployments can also be efficiently

computed following interval arithmetic rules.

Errors can also propagate to end results via their influence on control flow. When a

faulty variable is used in a predicate expression and its estimated range spans the predicate

threshold, the range of the result is computed by combining the ranges that would result

from either branch. For non-aggregating data collection applications, the predicates de-

termine whether data should be sent to the base station. For applications with in-network

spatial data aggregation, the predicates determine whether data should be included in the

network-level aggregation operations. For example, COLLECT AVG(y) WHERE x >

100 requires the y variable of a particular node to be included in the averaging operation

if that node’s x value is above 100. When a fault results in the interval for x spanning

100, the range of interval AVG(y) (the average of all node y values) should span the re-
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sults calculated with and without including y from the faulty node. The error estimation

problem can more formally be defined as follows.

Given that y = f(x1, x2, · · · , xn) where f is an aggregation function for which xi

may or may not be included in the argument list and n is number of variables, compute

the range of y. The range of y can be naı̈vely obtained by computing the ranges for the

2n cases separately and calculating their union. The computational complexity may be

acceptable for a sparse network since n is bounded by the maximum number of immediate

children nodes. Fortunately, for the aggregation operations commonly used in wireless

sensor network deployments, the computational complexity is less than O (n log n). For

MAX and MIN operations, including one more argument only monotonically affects the

upper or lower bound of the result. Therefore, the range of the result can be easily calcu-

lated by iteratively considering each of the n variables. For AVG, adding one more variable

may increase or decrease both lower and upper bounds. However, the range of the result

can still be computed in O (n log n) time. For example, to get the lower bound of the AVG

result, first order the lower bounds of the intervals associated with the nodes that may meet

the selection requirements (but are not certain to meet them) in increasing order. Incremen-

tally scan the ordered list, add each value to the set of values to average, and recompute

the result until the local minimum for the result is reached. To get the upper bound of the

AVG result, use a similar technique, but instead scan the upper bounds of the intervals in

decreasing order. Consider the expression COLLECT AVG(y) WHERE x > 100 as an

example. Assume a network of five nodes. Their x ranges are [120], [90, 110], [80, 120],

[83, 102], and [130]. Their y values are 2, 4, 6, 3, and 8. To compute the upper bound of

AVG(y), we order the y values except 2 and 8 (they must be involved in computing the

average) in descending order. The average of 2 and 8 is 5. After including 6, the average

becomes 5.3. After including 4, the average becomes 5. Therefore, the upper bound for
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AVG(y) is 5.3.

4.2.5 Automated Code Transformation

We now describe a software implementation to support automatic online fault detection

and error estimation. The following steps will be used to generate fault-aware code. (1)

Replace sensor readings and the variables that depend upon them with tuples containing

two variables of the same type. (2) Insert calls to fault detection functions after sensor read-

ings are obtained. The fault detection methods have been described in Section 4.2.3. (3)

Insert calls to temporal gradient-based error estimation functions after error detection func-

tion calls to calculate ranges for faulty variables. (4) Insert calls to spatial gradient based

error estimation functions before a node aggregates its received data. (5) Convert math-

ematical expressions involving possibly faulty variables to interval arithmetic operations.

For example, z = x+y is converted to z.low = x.low+y.low; z.high = x.high+y.high.

4.3 Experimental Evaluation

We evaluated the accuracy of the value estimates provided by FACTS, as well as its

impact on code size and memory use. Our evaluation uses a small-scale experimental

hardware testbed and simulations of a larger-scale network composed of 74 sensor nodes

with real-world data traces. This section describes the experimental setup and the results.

4.3.1 Prototype Evaluation

We implemented a prototype of the proposed system and tested it in a small-scale sen-

sor network consisting of four TelosB nodes. Each node samples temperature every 2 s.

The average across all nodes is returned to the base station. The results contain a tuple

for each sampling cycle indicating the upper and lower bounds on the average tempera-

ture. Figure 4.3 displays the temperature upper and lower bounds as functions of time.
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Figure 4.3: Temperature interval as a function of time.

Table 4.2: Fault-Aware and Unaware Implementations
Code size (B) Memory usage (B)

App.1 App.2 App.3 App.1 App.2 App.3
Fault-unaware 32,556 33,060 27,722 2,130 2,134 2,038
Fault-aware 37,358 37,740 32,088 2,212 2,224 2,096

Overhead (%) 14.7 14.2 15.7 3.8 4.2 2.7

We injected intermittent sensor faults by shorting the terminals of the thermal sensor to

produce readings of -39.6 °C (from a 0 V analog-to-digital converter input), e.g., at 22 s.

In the absence of faults, the upper and lower bounds in Figure 4.3 are identical. The esti-

mated bounds become looser over time when the intermittent fault persists, due to the use

of temporal correlation to calculate the temperature interval. This section serves primarily

to demonstrate that a functioning prototype of the FACTS system has been implemented,

and explain its operation.

4.3.2 Evaluation of Code Size and Memory Use Overhead

To evaluate the impact of using FACTS on code size and memory requirements, we

compared the code generated with the original WASP compiler and the extended FACTS

compiler. Table 4.2 shows the code size and memory use for the three representative

examples based on deployed sensor network applications [130]. Application 1 periodically

gathers temperature and light data. Application 2 periodically samples light and averages
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Table 4.3: Lines of Code for Fault-Aware and Unaware Implementations
High-level specification NesC code
App.1 App.2 App.3 App.1 App.2 App.3

Fault-unaware 6 7 7 489 495 484
Fault-aware 12 10 10 621 585 545

data among nodes at similar heights. Application 3 periodically samples temperature and

sends data only when the increase in temperature exceeds a threshold. The average code

size overhead across the three applications is 15% and the average memory overhead is

3.6%.

We compare the lines of code for the high-level specification input to FACTS as well as

the generated node-level code to give some evidence of its impact on programming com-

plexity. The results are shown in Table 4.3. The applications are the same as those used

for code size and memory use estimation. FACTS only requires three to six additional

lines of code in the high-level specification, depending on how many physical parameters

are sensed. Note that the syntax of the FACTS specifications is at least as simple as that

for functionality. Therefore, we argue that the programming complexity only increases

slightly. Given that researchers have previously demonstrated via user studies that novice

programmers can use WASP correctly and efficiently [130], and the additional specifi-

cations required by FACTS have low complexity and length, we believe that the FACTS

system will remain accessible to novice programmers. In contrast, the low-level NesC

code (excluding library code) increases in length by 61, 90, or 132 lines of code depend-

ing on application. This implies that the extra programming efforts required to manually

and explicitly handle sensor faults is potentially high. With FACTS, the increased imple-

mentation complexity is not exposed to programmers.
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Figure 4.4: Temperature histogram. Figure 4.5: Outlier histograms.

4.3.3 Simulation of Large-Scale Network to Evaluate Impact of Varying Fault Rates

Simulation environment: We use the SIDnet-SWANS simulator [43] and temperature

measurement time series from a real network deployment [13] to model a network of 74

nodes that sample temperature every 29.3 seconds and aggregate data in the network. We

assume two aggregation expressions: average and minimum.

Environmental data generation: We use the data from the LUCE deployment at the

EPFL campus [13] to provide environmental data for our simulation. The LUCE deploy-

ment contains 97 weather stations that span a 500 m×300 m area and ran for 6 months.

We take the following steps to generate fault-free data traces from the original data set.

(1) It is important that faults be rare in our input data so that we can determine the actual

ground truth data values with which our fault correction system ranges and estimates will

be compared. We identified a time interval in which the data drop rate from most of the

nodes is small and eliminated from consideration 23 nodes that have high drop rates in

that time interval. We used a one-hour trace containing 9,028 data samples from 74 nodes.

(2) The original data set has a period of 29.3 s with small jitter. We parse the data to pro-

duce synchronized periodic time series. Multiple samples associated with the same period

are averaged, while periods without data are recovered by selecting from the valid data
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value distribution for the application. Combined, these faults only affected 3.7% of the

time series data. (3) We determine the lower and upper bounds based on the histogram of

temperature data from the 74 nodes. The histogram is shown in Figure 4.4, where 99.4%

of the data are in the 5–30 °C range. Inspection indicates that data outside this range are

associated with spikes in the time series. We treat data outside this range as outliers. (4)

We analyze the temporal and spatial correlation ignoring outliers and compute the bounds

on temporal and spatial gradients. The results are 3 °C per 29.3 s and 5 °C per 50 m. (5)

We replace faulty and missing data (only 3.7% of the original data traces) with values that

are generated based on spatial and temporal correlation. The resulting data set complies

with the bounds on data range, temporal gradient, and spatial gradient.

Fault injection during evaluation: We model sensor transient faults using Poisson pro-

cesses, primarily because many transient fault processes are memory-less. This influences

only our simulation results, not the design of the FACTS system, which can handle fault

processes with arbitrary temporal density functions. We use independent but equal-rate

fault processes for different sensor nodes. Faulty sensor readings are generated by sam-

pling from the set of outliers extracted from the original data set; this was done so that the

simulated and actual faulty data would have the same distribution, which is shown in Fig-

ure 4.5. We run simulations with multiple fault rates, ranging from 0.1 to 0.5 per minute,

to study the impact of fault rate on accuracy. The tested fault rates are selected based on

a survey on sensor network data faults by Ramanathan et al. [112]. The sensor fault du-

rations in the original data are generally less than 29.3 s (one sampling cycle), supporting

the injection of transient faults. For each fault rate, we run 5 simulations with different

random seeds and average the results.

Results: Figure 4.6 shows an example simulated time series for a fault rate of 0.1

per minute. The shaded area shows the value intervals produced by FACTS. The curve
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Figure 4.6: Results with and without
FACTS.

Figure 4.7: Dependence of error (in °C) on
fault rate.

inside it shows ground truth results from the original time series. The figure shows that

the original fault-unaware program can produce substantial errors (0.7 °C on average and

2.7 °C maximum) and that the intervals produced by FACTS always contain the actual

value.

If the midpoints of the intervals produced by FACTS are used as value estimates, the

error relative to ground truth values can be computed. Figure 4.7 shows aggregate er-

ror for simulation runs with different fault rates. The root mean square errors relative

to the ground truth data are computed for the fault-aware and fault-unaware programs.

FACTS min and FACTS avg represent the results for the minimum expression application

and the average expression application. Orig min and Orig avg represent the results for

the fault-unaware versions of these applications. FACTS results have an average error of

0.02 °C and fault-unaware results have an average error of 3.86 °C. The worst-case errors

are 5.95 °C and 36.40 °C for FACTS and the fault-unaware systems.

4.4 Conclusions

We have described FACTS, a system to simplify fault detection and correction in wire-

less sensor networks that is designed to be accessible to application experts who may not
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be expert programmers. FACTS uses easily specified domain-specific expert knowledge to

support the on-line detection of some classes of sensor faults and appropriately adjust ex-

pression intervals to make the system-level impact of faults clear to sensor network users.

We implemented FACTS by extending the WASP sensor network language, compiler, and

run-time system. A small-scale hardware testbed and simulations of a 74-node network

using real-world sensor data show that FACTS substantially increases estimation accuracy

and imposes little overhead compared to fault-unaware programs. Our work focuses on a

common type of fault in sensor networks and an error handling method that is useful for

data-centric applications. To be applied to a larger domain of sensor network applications,

other types of faults and error handling methods need to be considered.



CHAPTER V

Memory Expansion for MMU-Less Embedded Systems

Random access memory (RAM) is tightly-constrained sensor network nodes. The most

widely-used sensor network nodes have only 4–10 KB of RAM and do not contain memory

management units (MMUs). It is difficult to implement complex applications under such

tight memory constraints. Nonetheless, price and power consumption constraints make

it unlikely that increases in RAM in these systems will keep pace with the increasing

memory requirements of applications.

In this chapter, we present automated compile-time and run-time techniques to increase

the amount of usable memory in sensor nodes. The proposed techniques do not increase

hardware cost, and require few or no changes to existing applications. We have devel-

oped run-time library routines and compiler transformations to control and optimize the

automatic migration of application data between compressed and uncompressed memory

regions, as well as a fast compression algorithm well suited to this application. These tech-

niques were experimentally evaluated on Crossbow TelosB sensor network nodes running

a number of data-collection and signal-processing applications. Our results indicate that

available memory can be increased by up to 50% with less than 10% performance degra-

dation for most benchmarks. Our approach can be applied to other MMU-less embedded

systems.

68
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The rest of this chapter is organized as follows. Section 5.2 summarizes related work

and contributions. Section 5.3 provides a motivational scenario that illustrates the impor-

tance of the proposed technique. Section 5.4 describes the library and compiler techniques,

optimization schemes, as well as the compression and decompression algorithms designed

to automatically increase usable memory in sensor network nodes. Section 5.5 presents

the experimental set-up, describes the workloads, and discusses the experimental results

in detail. Finally, Section 5.6 concludes the article.

5.1 Introduction

Low-power, inexpensive embedded systems are of great importance in applications

ranging from wireless sensor networks to consumer electronics. In these systems, pro-

cessing power and physical memory are tightly limited due to constraints on cost, size,

and power consumption. Moreover, many microcontrollers lack memory management

units (MMUs). Sensor network nodes have tight price and power constraints. Although

the proposed techniques may be used in any memory-constrained embedded system with-

out an MMU, this article will focus on using them to increase usable memory in sensor

network nodes with no changes to hardware and with no or minimal changes to applica-

tions.

Many recent ideas for improving the communication, security, and in-network pro-

cessing capabilities of sensor networks rely on sophisticated routing [56], encryption [38],

query processing [41], and signal processing [72] algorithms implemented on sensor net-

work nodes. However, sensor network nodes have tight memory constraints. For example,

the popular Crossbow MICA2, MICAz, and TelosB sensor network nodes have 4 KB or

10 KB of RAM, a substantial portion of which is consumed by the operating system (OS),

e.g., TinyOS [40] or MANTIS OS [3]. Tight constraints on the cost and power consump-
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tion of sensor network nodes make it unlikely for the size of physical RAM to keep pace

with the demands of increasingly sophisticated in-network processing algorithms.

In order to reduce cost, sensor network nodes typically avoid the use of dedicated dy-

namic random access memory (DRAM) integrated circuits; in extremely low price, low

power embedded systems, RAM is typically on the same die as the processor. Unfortu-

nately, it is not economical to fabricate the deep trench capacitors used for high-density

DRAM with the same process as processor logic. As a result, static random access mem-

ory (SRAM) is used in sensor network nodes. Unlike DRAM, SRAM generally requires

six transistors per bit and has high power consumption. Increasing the amount of physical

memory in sensor network nodes would increase die size, cost, and power consumption.

Some researchers have proposed addressing memory constraints using hardware tech-

niques such as compression units inserted between memory and processor. However, such

hardware implementations typically have difficulty adapting to the characteristics of dif-

ferent application data. Moreover, they would increase the price of sensor network nodes

by requiring either additional integrated circuit packages or microcontroller redesign. Bar-

ring new technologies that allow inexpensive, high-density, low-power, high-performance

RAM to be fabricated on the same integrated circuits as logic, sensor network applications

will continue to face strict constraints on RAM in the future.

Software techniques that use data compression to increase usable memory have advan-

tages over hardware techniques. They do not require processor or printed circuit board

redesign and they allow the selection and modification of compression algorithms, per-

mitting good performance and compression ratio (compressed data size divided by orig-

inal data size) for the target application. However, software techniques that require the

re-design of applications are unlikely to be used by anybody but embedded systems pro-

gramming experts. Unfortunately, most sensor network application experts are not em-
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bedded system programming experts. If memory expansion technologies are to be widely

deployed, they should not require changes to hardware and should require minimal or no

changes to applications. Motivated by the above observations, we propose a new software-

based on-line memory expansion technique, named MEMMU, for use in wireless sensor

networks.

5.2 Related Work and Contributions

The proposed library and compiler techniques to increase usable memory build upon

work in the areas of on-line data compression, wireless sensor networks, and high-performance

data compression algorithms.

Software Virtual Memory Management for MMU-Less Embedded Systems Choudhuri

and Givargis [25] proposed a software virtual memory implementation for MMU-less em-

bedded systems based on an application level virtual memory library and a virtual memory

aware assembler. They assume secondary storage, e.g., EEPROM or Flash, is present in

the system. Their technique automatically manages data migration between RAM and

secondary storage to give applications access to more memory than provided by physical

RAM. However, since accessing secondary storage is significantly slower than accessing

RAM, the performance penalty of this approach can be very high for some applications. In

contrast, MEMMU requires no secondary storage. In addition, its performance and power

consumption penalties have been minimized via compile-time and runtime optimization

techniques.

Hardware-Based Code and Data Compression in Embedded Systems A number of pre-

vious approaches incorporated compression into the memory hierarchy for different goals.

Main memory compression techniques [138] insert a hardware compression/decompression

unit between cache and RAM. Data are stored uncompressed in cache, and are compressed
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on-line when transferred to memory. Main memory compression techniques are used to

improve the system performance by providing virtually larger memory. Code compres-

sion techniques [67] store instructions in compressed format in ROM and decompress

them during execution. Compression is usually performed off-line and can be slow, while

decompression is done during execution, usually by special hardware, and must be very

fast. Code compression techniques are often used to save space in ROM for embedded

systems with tight resource constraints.

Software-Based Memory Compression Compressed caching [29,143] introduces a soft-

ware cache to the virtual memory system. This cache uses part of the memory to store data

in compressed format. Swap compression [139] compresses swapped pages and stores

them in a memory region that acts as a cache between memory and disk. The primary

objective of both techniques is to improve system performance by decreasing the number

of page faults that must be serviced by hard disks. Both techniques require backing store,

i.e., a hard disk, when the compressed cache is filled up. In contrast, MEMMU does not

rely on any backing store.

CRAMES [36] is an OS controlled, on-line memory compression framework designed

for disk-less embedded systems. It takes advantage of the OS virtual memory infras-

tructure and stores least recently used (LRU) pages in compressed format in physical

RAM. CRAMES dynamically adjusts the size of the compressed memory area, protect-

ing applications capable of running without it from performance or energy consump-

tion penalties. Although CRAMES does not require any special hardware for compres-

sion/decompression, it does require an MMU. In contrast, MEMMU requires no MMU.

In fact, MEMMU implements software memory management via its compile-time and

runtime techniques and uses numerous optimizations to maintain performance. This ca-

pability is necessary for most sensor network nodes and low-cost embedded processors
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because the majority do not have MMUs.

Biswas et al. [18] described a memory reuse method that relies upon static liveness

analysis. It compresses live globals in place and grows the stack or heap into the freed

region when they overflow. Their work aims at improving system reliability by resolving

runtime memory shortage errors as a consequence of the difficulty in predicting the size

requirement of dynamic memory objects such as stack and heap. In contrast, MEMMU

tries to solve a different problem: permitting system operation when the lower bound on

memory requirements already surpass physical memory. Therefore, MEMMU has a much

bigger memory expansion ratio.

Garbage collection is another approach to reduce memory footprint by reclaiming

memory occupied by unreachable objects. Researchers have designed garbage collectors

with small code size and memory overhead for embedded systems [6]. Their approach is

complementary to MEMMU. Garbage collection based techniques are useful for programs

using dynamic memory allocation. MEMMU focuses on programs using static memory

allocation in which memory objects can be alive during the whole lifetime of the program.

Cooprider and Regehr [28] proposed an RAM compression technique that targets data

elements that have values limited to small sets, which are determined using compile-time

analysis. In contrast, MEMMU uses on-line compression of data based on access patterns

that are hard to determine at compile time. As a result, MEMMU can be applied to sensor

data, generally permitting greater increases in usable memory. Note that Cooprider’s and

Regehr’s technique, and MEMMU, are complementary; they compress different structures

and do not significantly interfere with each other.

Compression for Reducing Communication in Sensor Networks

In many sensor network applications, sensor nodes in the network must frequently

communicate with each other or with a central server. Sensor nodes have limited power
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sources and wireless communication accelerates battery depletion [109]. In-network data

aggregation [83,46] and data reduction via wavelet transform or distributed regression [50,

97] can significantly reduce the volume of data communicated. However, these techniques

are lossy, limiting their application. Recently, researchers have proposed to reduce the

amount of data communication via compression [105, 110] in order to reduce radio en-

ergy consumption. Our work differs from theirs in that MEMMU focuses on automated

memory compression for functionality improvement instead of communication reduction.

Software-Based Memory Compression Algorithms

LZO [100] is a very fast general-purpose compression algorithm that works well on

many in-RAM data. However, the memory requirement of LZO is at least 8 KB, far

exceeding the available memory of many low-end embedded systems and sensor nodes.

Rizzo et al. [114] proposed a software-based algorithm that compresses in-RAM data by

only exploiting the high frequency of zero-valued data. This algorithm trades off degraded

compression ratio for improved performance. Wilson et al. [143] presented a software-

based algorithm called WKdm that uses a small dictionary of recently-seen words and

attempts to fully or partially match incoming data with an entry in the dictionary. Yang et

al. [37] designed a software-based memory compression algorithm for embedded systems

named pattern-based partial match (PBPM). This algorithm explores frequent patterns that

occur within each word of memory and exploits similarities among words.

Many software-based memory compression algorithms are not appropriate for use on

sensor network nodes due to large memory requirements or poor performance. For those

with sufficiently low overhead, we found none that provides a satisfactory compression

ratio for sensor data. The main reasons for this follow:

1. Zero words are rare in many forms of sensor data.
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2. Many forms of sensor data change gradually with time. As a result, adjacent data

elements are often similar in magnitude but have very different bit patterns. There-

fore, conventional dictionary-based compression does not work well. We evaluated

a partial dictionary match algorithm [37] in this application but the compression ra-

tio was much worse than delta compression. The partial dictionary match achieved

an 86% compression ratio for trace data while the proposed delta compression algo-

rithm achieved a 50% compression ratio. We suspect that part of the cause for the

poor performance of the dictionary-based algorithm was the high relative penalty

for storing dictionary indices when 16-bit words are used; the algorithm performs

well in another application in which 32-bit words are used.

3. The block size used in compression is often restricted in low-cost MMU-less de-

vices, as we will explain later.

We propose a memory compression algorithm that operates with very high perfor-

mance on the 16-bit data generally found in the memory of MICAz and TelosB sensor

network nodes. The average compression ratio for various types of sensor data is approx-

imately 50%.

Contributions The proposed memory expansion technique, MEMMU, expands the

memory available to applications by selectively compressing data that reside in physi-

cal memory. MEMMU uses compile-time transformations and runtime library support to

automatically manage on-line migration of data between compressed and uncompressed

memory regions in sensor network nodes.

MEMMU essentially provides a compressed RAM-resident virtual memory system

that is implemented completely in software via compiler transformations and library rou-

tines. Its use requires no hardware MMU, and requires few or no manual changes to
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application software.

Our work makes four main contributions.

1. It provides application developers with access to more usable RAM and requires no

or minor changes to application code and no changes to hardware.

2. It does not require the presence of an MMU and has other design features that en-

able its use in sensor network nodes with extremely tight memory and performance

constraints.

3. It has been optimized to minimize impact on performance and power consumption;

experimental results indicate that in many applications, such as data sampling and

audio signal correlation computation, its performance overhead is less than 10%.

4. We have released MEMMU for free academic and non-profit use [87].

MEMMU was evaluated on TelosB wireless sensor network nodes. The TelosB is

an MMU-less, low-power, wireless module with integrated sensors, radio, antenna, and

an 8 MHz Texas Instruments MSP430 microcontroller. The TelosB has 10 KB RAM and

typically runs TinyOS.

5.3 Motivating Scenario

In this section, we describe a motivating scenario that illustrates the purpose and op-

eration of MEMMU. Consider an application in which individual sensor nodes react to

particular events, e.g., low-frequency vibration, by triggering high rate audio data sam-

pling. After the sampling is complete, data are filtered and statistics, e.g., variance and

mean, are computed and transferred to an observer node. If the raw data are of interest

to the observer node, they are requested and transmitted through the network. In existing

sensing architectures, the size of the data buffer is tightly constrained. For example, on
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a Crossbow TelosB sensor node a maximum of 9.5 KB RAM is available for buffering.

Moreover, sampling rate and duration cannot be increased without redesigning the sensor

node hardware or increasing the complexity of application implementation. If, instead,

the automated data compression technique proposed in this article is used, portions of

sampled data will be automatically compressed whenever they would otherwise exceed

physical memory. During filtering, e.g., convolution, data are automatically decompressed

and recompressed to trade off performance and usable memory. Commonly-accessed data

are cached in uncompressed format to maintain good performance. This is achieved with-

out changes to hardware and with no or minimal changes to application code. To the

application designer, it appears as if the sensor network node has more memory than is

physically presented.

Many wireless sensor networks use a store-and-forward technique to distribute infor-

mation. Therefore, the local memory of a node is used as a shared resource to handle

multiple messages traveling along different routes. In order to avoid losing data during

communication, a node must generally store already-sent data until it receives an acknowl-

edgment. As a result, the buffer can easily be filled when the communication rate is high,

leading to message loss or even network deadlock. With MEMMU, usable local memory

can be increased thus reducing the probability of data loss.

5.4 Memory Expansion on Embedded Systems Without MMUs

This section describes the design MEMMU, our technique for Memory Expansion on

embedded systems without MMUs. The main goal of MEMMU is to provide application

designers with access to more usable RAM than is physically available in MMU-less em-

bedded systems without requiring changes to hardware and with minimal or no changes to

applications. We achieve this goal via on-line compression and decompression of in-RAM
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data. In order to maximize the increase in usable RAM and minimize the performance and

energy penalties resulting from the technique, it is necessary to solve the following prob-

lems:

1. Determine which pages to compress and when to compress them to minimize perfor-

mance and energy penalties. This is particularly challenging for low-end embedded

systems with tight memory constraints and without MMUs.

2. Control the organization of compressed and uncompressed memory regions and the

migration of data between them to maximize the increase in usable memory while

minimizing performance and energy consumption penalties.

3. Design a compression algorithm for use in embedded systems that has low perfor-

mance overhead, low memory requirements, and a good compression ratio for data

commonly present in MMU-less embedded systems. For example, data sensed, pro-

cessed, and communicated in sensor network nodes, such as audio samples, light

levels, temperatures, humidities, and, in some cases, two-dimensional images.

MEMMU divides physical RAM into three regions: the reserved region, the com-

pressed region, and the uncompressed region. The reserved region is used to store un-

compressed data of the OS, data structures used by MEMMU, and small data elements.

The compressed region and the uncompressed region are both used by applications. Ap-

plication data are automatically migrated between the compressed and the uncompressed

regions. The size of each region is decided by compile-time analysis of application mem-

ory requirements and estimated compression ratio. The compressed region can be viewed

as a high-capacity but somewhat slower form of memory, and the uncompressed region

can be viewed as a small, high-performance data cache.
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Figure 5.1: Memory layout. Figure 5.2: Memory coalescing.

Figure 5.1 illustrates the memory layout of an embedded system using MEMMU. From

the perspective of application designers, all memory in the left-most Virtual Memory col-

umn is available. Virtual memory is broken into uniform-sized regions called pages. These

pages are mapped to the uncompressed or compressed region (shown to the right of Fig-

ure 5.1) via a software-maintained page table. The page number is used as an index into

the page table. A memory management mechanism was designed to manage data com-

pression, decompression, and migration between the two regions.

5.4.1 Handle-Based Data Access

Data elements are accessed via their virtual address handles. The virtual page number

of a corresponding virtual address is obtained by dividing the virtual address by the page

size. The mapping from virtual page to RAM is stored in a page table maintained as an

array. For example, if the content of index n in the array is m, and m is in the range of

uncompressed pages, virtual page n is mapped to page m in the uncompressed region. If

m is greater than number of uncompressed pages, n is mapped to a page in the compressed

region.

When data are accessed via their virtual addresses within an application, MEMMU

first determines the status of the corresponding virtual page based on the page table.

1. If the virtual page maps to an uncompressed page, the physical address can be di-
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rectly obtained by adding the offset to the address of the uncompressed page. The

data element is then accessed via its physical address.

2. If the virtual page has not been accessed before, i.e., no mapping has yet been de-

termined for the virtual page, a mapping from this page to an available page in the

uncompressed region is created. If there is no available page in the uncompressed

region, a victim page is moved to the compressed region to make an uncompressed

page available.

3. If the virtual page maps to a compressed page, the page is decompressed and moved

to the uncompressed region. Again, if there is no available page in the uncom-

pressed region, a victim page is moved to the compressed region to make space for

an uncompressed page available.

In order to make the procedure transparent to users, and to avoid increasing application

development complexity, the routines for these operations are stored in a runtime library

and compiler transformations are used to convert memory accesses within unmodified

code to library calls. Figure 5.3 illustrates the write handle procedure. The three

vertical paths prior to the final store instruction correspond to the situations discussed

above. The left path shows the case in which a virtual page p0 maps to a page PT[p0] in

the uncompressed region. Its physical address is computed by adding offset to the physical

page address. In the other two paths, virtual page p0 maps to a compressed page. More

specifically, in the middle path, a free page p1 is available in the uncompressed region.

The compressed page is decompressed to p1 and a mapping from p0 to p1 is created in

the page table. Otherwise if the uncompressed region is full, as shown in the right path,

a victim page p2 from the uncompressed region is compressed. In that case, the physical

page previously used by p2 is freed and is now used to store decompressed p0. Finally,
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Figure 5.3: Write handle procedure.

p0 is mapped to a physical page in the uncompressed region and data are written to the

physical address.

5.4.2 Memory Management and Page Replacement

When the uncompressed memory region is filled by an application, its pages are in-

crementally moved to the compressed region to make space available in the uncompressed

region. When data in the compressed region are later accessed, they are decompressed and

moved back to the uncompressed region. Ideally, pages that are unlikely to be used for a

long time should be compressed to minimize the total number of compression and decom-

pression events. MEMMU approximates this behavior via an LRU victim page selection
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policy. The LRU list is doubly-linked. Every item in the LRU list stores the associated vir-

tual page handle. Handles are ordered by the sequence of handle references. When a page

that is already in the LRU list is accessed, it is relocated to the tail of the list, otherwise

the new page is appended to the list. The page at the head of the LRU list is selected for

compression. After a victim page is compressed, the corresponding node is removed from

the LRU list. Therefore, page handles in the LRU list indicate pages currently residing in

the uncompressed region.

Managing the uncompressed memory region is straightforward since pages have uni-

form sizes. On the contrary, managing the compressed region is complex since page sizes

differ. Dynamic memory allocation is used in the compressed region to permit the imme-

diate reuse of space when a page is decompressed and moved back to the uncompressed

region. Compressed memory management is akin to heap management. It imposes mem-

ory overhead for keeping information such as page sizes and addresses (refer to Section 5.5

for MEMMU’s memory overhead). This overhead is important in embedded systems that

contain only a few kilobytes of RAM. We use the best fit policy, which allocates the

smallest free slot equal to or larger than the required size. Best fit tends to produce the

least fragmentation and minimizes the performance overhead resulting from splitting and

merging free slots. Pages that are moved from the compressed region to the uncompressed

region to read data, and returned to the compressed region without changes have the same

compressed size. As a result, they can often be returned to their prior locations in the

compressed region, in which they fit exactly. In this case, no free slot merging or splitting

will occur. Though best fit needs to scan the whole free slot list, the performance over-

head is low because the number of free slots, which is upper-bounded by the number of

compressed pages, is small.
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5.4.3 Preventing Fragmentation

Fragmentation is frequently a problem for dynamic memory allocation techniques.

Fragmentation can prevent a newly compressed page from fitting in the compressed region

even though the total available memory in that region is sufficient. This situation has the

potential to terminate application execution. MEMMU performs memory merging and

coalescing to prevent fragmentation.

Free block merging takes place every time a page is decompressed and removed from

the compressed region. Free block handles are maintained in a list in order of the physical

address of the compressed areas. If a free block is adjacent to its predecessor or successor,

these adjacent blocks are merged. This is a well-known memory management technique.

Coalescing occurs when the memory allocator fails to allocate a new block from the

free list. In this case, MEMMU locates pages in order of increasing addresses and moves

them to the top of the compressed region, or to the bottom of the most-recently moved

pages. This process continues until all compressed pages have been moved. Upon com-

pletion, a single large free region remains. Figure 5.2 illustrates this procedure. Rectan-

gles A, B, and C represent three compressed pages and shaded rectangles represent freed

blocks. Initially, a request for a size a little bigger than the first free block cannot be sat-

isfied because these free blocks are not continuous. After three iterations of moving A, B,

and C upward, all freed blocks are merged into one big free block, and the requested block

can be allocated from the big free block. This coalescing algorithm has a time complexity

of O (n2), where n is the total number of compressed pages. However, since in practice

n is usually small, the cost of coalescing is low. For example, a TelosB mote with 10 KB

RAM and a page size of 256 bytes has 40 pages of RAM. In addition to the three pages

used for the reserved region (one page used by the operating system and two pages used

by MEMMU), it may need 18 compressed pages (n = 18) and 19 uncompressed pages to
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expand the usable memory by (18/0.5 + 19)/(40 − 1) − 1 = 41%. Note that coalescing

never imposes a performance penalty unless it is the only remaining alternative permitting

the allocation of needed memory. It improves usable memory size for multiple benchmark

applications.

5.4.4 Interrupt Management

The primary target platform for MEMMU is wireless sensor network nodes, which are

typically memory-constrained, MMU-less embedded systems. On sensor nodes, hardware

interrupts often take place when newly-sensed data arrive. There are two naive approaches

to handle interrupts during page misses: (1) disable them when accessing data in mem-

ory or (2) allow interrupts at any time. Unfortunately, the first approach would result in

interrupt misses when interrupts occur during page misses; the second approach is also

dangerous because any access to a page in the compressed region during the execution of

an interrupt service routine triggered during a page miss would result in an inconsistent

compressed region state. In this section, we describe the potential for missed interrupts in

more detail and propose a solution.

Consider an environmental data sampling application in which missing samples is not

acceptable. Although the optimization techniques described in Section 5.4.5 can be used to

reduce the overall execution time overhead, they cannot reduce the worst-case data access

delay. In the worst case, the pages of data (except the control data structures stored in the

reserved region) referenced in the sampling event handler are all in the compressed region,

but there is neither available space in the uncompressed region to decompress these pages

nor space in the compressed region to compress a victim page. In this situation, coalescing,

compression, and decompression must be performed before each data reference, i.e.,

worst case delay = N × (tcoalesce + tcomp. + tdecomp.)
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where the t values are durations and N is the number of memory references in the sampling

event handler. For most applications, the action taken on a sampling interrupt is merely

storing the sensed data. Other tasks are posted to process the data later. Therefore, the

interrupt handler only has one memory reference that may point to the compressed region.

The worst-case coalescing time is encountered when all blocks in the compressed region

must be moved upward. This latency can be bounded by the time required to copy the en-

tire compressed region plus the time required by the coalescing algorithm. We measured

the worst-case delay on a TelosB wireless sensor node described in Section 5.4.4, assum-

ing the compression algorithm introduced in Section 5.4.6 is used. The time required to

compress and decompress one 256 byte page is 3.2 ms. The worst-case coalescing delay

on a TelosB mote with a compressed region of 20 pages is 15.7 ms. MEMMU should only

be used for applications in which the worst-case delay does not violate any hard timing

constraints. If the data set accessed in the interrupt handler is small, this delay can be

avoided by storing this data set in the reserved region. This is normally the case because

the data set is generally a small buffer.

In applications that compute only in response to sampling events, samples will not

be missed if the sampling period is longer than the worst-case compression and decom-

pression delay triggered by a sampling event. However, constraining sampling rate is not

always an acceptable solution because some applications may require high sampling rates

and even infrequent events may occur during a page miss. To solve this problem, a ring

buffer may be used. The ring buffer sits in the reserved memory region. When data arrive,

they are immediately stored in the ring buffer and a process rbuf task is posted, which

moves older data in the ring buffer to the sample buffer. This technique prevents data that

arrive during page misses from being dropped. The ring buffer should be large enough to

hold the longest-possible sequence of missed samples. Our experiments indicate that an
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application sampling at 19,600 bps, i.e., 2,450 sample per second, requires a ring buffer

of at most 20 bytes. The use of a ring buffer for high-frequency sampling applications is

the only portion of the proposed design flow that requires (minor) changes to user appli-

cation code. Note that MEMMU does not require the use of a ring buffer when sampling

rate is low or when missing some samples is acceptable. MEMMU provides ring buffer

as a convenient and low-overhead method of preventing missed interrupts when neces-

sary. In order to use ring buffer, one needs to set the ring buffer length based on estimated

worst-case delay, insert the write rbuf function call, and post the process rbuf

task to transfer data from ring buffer to the application data structure. This approach also

solves the problem described at the beginning of Section 5.4.4. By using a ring buffer, the

interrupt handler does not access pages in the compressed or the uncompressed regions,

so there is no concern for a race condition. This approach also applies to other types of

interrupts.

5.4.5 Optimization Techniques

In previous sections, we described the basic design components of the MEMMU mem-

ory expansion system. With basic, unoptimized MEMMU, every memory access requires

1. A runtime handle check to determine whether the address being accessed is in the

uncompressed region;

2. Compression and decompression if the address is not in the uncompressed region;

3. An update to the LRU list; and

4. Virtual to physical address translation, which includes reading the physical page

number from the page table, and operations such as shift and add.
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This introduces high execution time overhead that is proportional to the total number of

memory accesses. Hence, the basic software virtual memory solution is not practical for

many real applications on embedded systems. However, optimization techniques can be

used to significantly reduce the number of runtime checks, LRU list updates, and address

translations. In this section, we describe several such compile-time optimization tech-

niques. Many of these optimizations are related to existing compiler analysis and loop

transformation work [93, 10, 85]. The proposed optimization techniques are based on the

analysis of explicit array access. This will pose no problem for most sensor networking

applications. For example, almost all of the contributed applications in the TinyOS source

repository use explicit array access. These applications were contributed by numerous

research and industry teams. If applications include implicit array accesses via pointers,

existing compiler techniques could be used to transform them to explicit accesses [35,140].

This compiler transformation is not currently supported by LLVM. However, it would be

trivial to use such a compiler pass in MEMMU as soon it becomes available.

1. Small object optimization: If a small data element is used very frequently in the

application, it should be assigned to the reserved region at compile time to elim-

inate all related handle checks and address translations. The increase in usable

memory resulting from allowing the migration of small globals, such as scalars,

is generally not sufficient to offset the cost of managing their migration. For exam-

ple, in the image convolution application shown in Figure 5.4(a), the small matrix

of coefficients, K, is accessed in every iteration of the loop (line 8) and the size

of this matrix is small. After moving it to the reserved region, we can eliminate

(W −M + 1)× (H −M + 1)×M ×M runtime checks and address translations

related to this matrix. Using a reserved region also prevent infrequently used data

from occupying the uncompressed region because they are stored in the same page
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with frequently referenced data. The small object optimization is implemented by

modifying LLVM [64] to allocate all data structures smaller than a threshold in the

reserved region since their sizes add up only to a few percent of the memory required

by the application.

2. Runtime handle check optimization: This technique is based on the observation

that if a sequence of memory references access the same page, only the first han-

dle check is necessary since the referenced page is sure to be in the uncompressed

region on subsequent accesses. This optimization is specific to sequential access

patterns, although different increment and decrement offsets are supported. By in-

serting checks to decide whether the data element to be accessed next is in a different

page from the previous one, the number of handle checks for all accesses to the same

page can be reduced to one. Performance is improved because the inserted check

is relatively faster than reading an element from the array (page table). This can be

especially useful for a hardware-triggered sample arrival event that writes data into

the buffer, as illustrated by Figure 5.6. Data ready is a hardware-triggered event.

The if statement in the optimized code in Figure 5.6(b) filters all the handle checks

mapping to the same page that was checked in the previous reference.

The Runtime handle check optimization takes place in a compiler pass, in which

LLVM creates two global variables, current page number and previous page num-

ber, for each check handle and puts every check handle call in an if state-

ment. Check handle is called only when the current page number differs from

the previous page number. This technique may introduce overhead in some appli-

cations, such as an application that accesses interleaved pages, because the current

page number will always be different from the previous page number. Therefore,
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it is only applied to programs or sections of code that access one array with affine

function of induction variables. Affine functions represent vector-valued functions

of the form f(x1, ..., xn) = A1x1 + ... + Anxn + b.

3. Loop transformation and compile-time elimination of inner-loop checks: This

optimization scheme further reduces runtime handle checks via compile-time loop

transformations. It may be applied to loops whose array accesses are affine functions

of enclosing loop induction variables. Figure 5.5(a) illustrates an example of sequen-

tial references to an array. At most PAGESIZE references access the same page.

Figure 5.5(b) illustrates the unoptimized solution, which inserts a handle check be-

fore every memory reference (line 2) and replaces writes to memory with calls to the

write handle routine (line 3). The entire loop requires N handle checks. Fig-

ure 5.5(c) illustrates an optimized solution. Loop transformation is used to break the

original loop into nested loops. Iterations of the inner loop (line 4) access memory

inside a single page. Therefore, handle checks for the inner loop can be replaced by

one check in the outer loop (line 3). The total number of handle checks is reduced

from N to N/PAGESIZE. For the sake of simplicity, array A shown in Figure 5.5 is

page-aligned. This loop transformation is a type of loop tiling [93].

The loop transformation technique can also be applied in the following, more gen-

eral, circumstances.

(a) The loop accesses only one array and the offset is a linear function of the loop

induction variable. In the transformed code, every exit from the inner loop im-

plies that the next accessed address is in a different page. When PAGESIZE is

evenly divided by the stride, the number of iterations of inner loop is constant:

PAGESIZE divided by stride. However, the number of inner loop iterations
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varies if the PAGESIZE is not evenly divided by the stride. In that case, vari-

ables start and end are used to control the iteration count for the inner loop by

locating the offset in the referenced page at the beginning or end of the inner

loop. Example code is shown in Figure 5.7. Start is calculated via modular di-

vision of the first address by PAGESIZE; end is obtained via modular division

of the largest address by PAGESIZE for the last iteration and by PAGESIZE for

other iterations.

(b) The loop accesses n arrays with the same stride and 2×n− 1 is no larger than

the number of pages in the uncompressed region m. Figure 5.10 shows how a

loop accessing arrays A, B, and C is transformed. The numbers in the arrays

correspond to virtual page indices. The original loop carries out interleaved

accesses to these arrays, from the top to the bottom. The loop is divided based

on the page boundaries in the array in which a page boundary is first crossed.

The arrows beside array C indicate iterations of the transformed loop. The

numbers to the right of the arrows are the pages brought into the uncompressed

region before each iteration. For example, at the beginning of third iteration,

pages 2, 8, and 14 are brought into the uncompressed region. Pages 7 and 13

should not be compressed, because they will be accessed during the second

iteration. The dashed box in Figure 5.10 indicates all of the pages accessed

during one iteration. Clearly, regardless of the vertical position of the box, it

can overlap at most 2 × (n − 1) + 1 pages. Therefore, this is the maximum

number of pages required in the uncompressed region.

(c) If the loop accesses multiple arrays with different strides, only perform trans-

formation on the arrays that meet conditions 1 or 2, above.
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4. Handle check hoisting: Hoisting handle checks is the process of replacing multiple

handle checks inside a loop with one handle check outside the loop. This optimiza-

tion requires that the total size of the accessed pages is no larger than the size of

the uncompressed region. It can be viewed as prefetching pages before entering

the loop and locking them in the uncompressed region until an iteration of the loop

finishes execution. The smallest and largest addresses accessed for each memory

object during one iteration are obtained and the largest possible number of pages

between them is computed. Figure 5.4 gives an example of handle check hoist-

ing. Figure 5.4(a) is the original code for image convolution. Without handle check

hoisting, MEMMU requires (H −M + 1) × (W −M + 1) × (2 ×M ×M + 1)

handle checks. It can be decided at compile time that the second inner loop (line 3),

which covers three rows of A and one row of B, is the largest loop that can reside

in the uncompressed region. Therefore, handle checks are hoisted to the beginning

of the second inner loop, as shown in Figure 5.4(b) line 3. This eliminates at least

(H −M + 1) × (W −M + 1) × (2 ×M ×M + 1) − (H −M + 1) × 4 han-

dle checks. Note that at most four pages may be covered in the second loop, two

for each array. To maximize performance while maintaining correctness, we start

from the inner-most loop, and expand outward until the analyzed memory usage in

the next loop cannot be accommodated in the uncompressed region or we reach the

outer-most loop.

5. Pointer dereferencing to reduce address translation: The purpose of the pointer

dereferencing optimization is related to that of strength reduction optimizations [93]:

replacing expensive operations with less expensive operations. In particular, it re-

places calls to write handle and read handle functions that contain compli-

cated operations for address translation to pointer dereferencing with simple pointer
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computations. Assume the accessed virtual address is an affine function of a basic

induction variable i: a × i + b, a and b are constants. The physical address of the

memory reference in question is phy addr = PT [(A + a× i + b)/PAGESIZE ] +

(A + a × i + b)%PAGESIZE . PT [(A + a × i + b) computes the starting address

of the physical page, (A + a× i + b)%PAGESIZE computes the offset in the page.

Normally, this operation cannot be optimized by general strength reduction opti-

mizations. However, if we know that the succeeding reference is in the same page

and the state of the page does not change between the references, this operation can

be reduced to phy addr+ = a × i .diff , where i .diff is the constant change for

i during each iteration of the loop. Therefore, pointer dereferencing is used after

runtime handle check optimization or loop transformation. During runtime handle

check optimization, each time a new page is accessed, i.e., inside the if statement, a

base pointer is computed; the following accesses in the same page dereference the

base pointer instead of referring to the page table. After loop transformation, before

entering the inner loop, base pointers are computed, and addresses accessed in the

inner loop are computed by dereferencing the base pointer. Figure 5.5(d) shows that

this optimization scheme, which is implemented in line 4, 6, and 7, can eliminate

N − N/PAGESIZE address translations. The pointer dereferencing optimization

replaces calls to the write handle and the read handle functions with direct

access via a pointer.

Each application may have a different set of effective optimizations, as shown in Sec-

tion 5.5.7. The following policy is followed by MEMMU to determine the optimizations

to use for a given application:

1. Apply small object optimization during the instruction replacement pass by leaving

reads and writes of small data structures unchanged.
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Input: 2-D array A[H,W ]
Input: 2-D array K[M, M ]
Output: 2-D array B[H −M + 1, W −M + 1]
1: n←

∑M−1
p=0

∑M−1
q=0 Kpq

2: for i ∈ {0 · · ·H −M} do
3: for j ∈ {0 · · ·W −M} do
4: t← 0
5: for a ∈ {0 · · ·M − 1} do
6: for b ∈ {0 · · ·M − 1} do
7: p← A[i + a][j + b]
8: q ← K[a][b]
9: t← t + p× q

10: end for
11: end for
12: B[i][j]← t/n
13: end for
14: end for

Input: array A allocated by vm malloc(H ×W )
Input: 2-D array K[M,M ]
Output: array B allocated by

vm malloc((H −M + 1)× (W −M + 1))
1: n←

∑M−1
p=0

∑M−1
q=0 Kpq

2: for i ∈ {0 · · ·H −M} do
3: Bring in pages to be used in the following loop

to uncompressed region
4: for j ∈ {0 · · ·W −M} do
5: t← 0
6: for a ∈ {0 · · ·M − 1} do
7: for b ∈ {0 · · ·M − 1} do
8: p← read handle(A+(i+a)×W+j+b)
9: q ← K[a][b]

10: t← t + p× q
11: end for
12: end for
13: write handle(B+ i×(W −K +1)+j, t/n)
14: end for
15: end for

(a) (b)

Figure 5.4: Example of (a) original and (b) transformed convolution application.

2. Apply loop transformation to a loop if the referencing array index is a linear function

of the induction variable. Then apply pointer dereferencing.

3. If the second step is not used for the application, then try handle check hoisting.

4. If neither the second nor third steps are used, and the loop only accesses a single

array sequentially, apply the runtime handle check optimization and pointer derefer-

encing.

The above policy implies a priority order on the proposed optimization techniques.

However, this selection order is a heuristic and may not be optimal. Each step is provided

in a separate compiler pass. Therefore, one might potentially run the passes in another

order to find out the optimal solution for a particular application.

5.4.6 Delta Compression Algorithm

We developed a high-performance, lossless compression algorithm based on delta

compression for use in sensor network applications. This algorithm exploits the simi-
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Variable: array A[N ]
1: for i ∈ {0 · · ·N} do
2: A[i]← x
3: end for

Variable: array A allocated by vm malloc(N)
1: for i ∈ {0 · · ·N} do
2: check handle((A + i)/PAGESIZE)
3: write handle(A + i, x)
4: end for

(a) Original code. (b) Transformed code without optimization.

Variable: array A allocated by vm malloc(N)
1: pnum← A/PAGESIZE
2: for i ∈ {A/PAGESIZE · · · (A + N)/PAGESIZE}

do
3: check handle(pnum)
4: for j ∈ {0 · · ·PAGESIZE} do
5: write handle(A + i× PAGESIZE + j, x)
6: end for
7: pnum + +
8: end for

Variable: array A allocated by vm malloc(N)
1: pnum← A/PAGESIZE
2: for i ∈ {A/PAGESIZE · · · (A + N)/PAGESIZE}

do
3: check handle(pnum)
4: base ptr ← virtual to physical(A + i ×

PAGESIZE)
5: for j ∈ {0 · · ·PAGESIZE} do
6: *base ptr← x
7: base ptr + +
8: end for
9: pnum + +

10: end for
(c) Transformed code with loop transformation. (d) Transformed code with loop transformation

and pointer dereferencing.

Figure 5.5: Example of optimizations on an array accesses.

1: check handle(buf + count)
2: write handle(buf + count, data)
3: count + +

1: cur page← (buf + count)/PAGESIZE
2: if cur page 6= last page then
3: check handle(cur page)
4: end if
5: write handle(buf + count, data)
6: count + +
7: last page← cur page

(a) Original code. (b) Transformed code with runtime handle
check optimization.

Figure 5.6: Example code transformation of data ready() function.

Variable: array A[M ]
1: for i ∈ {0 · · ·N} do
2: A[i× a + b]← x
3: end for

Variable: array A allocated by vm alloc(M )
1: t← A + b
2: p min← (A + b)/PAGESIZE
3: p max← (A + a×N + b)/PAGESIZE
4: for page ∈ {p min · · · p max} do
5: check handle(page)
6: for j ∈ {start · · · end} do
7: write handle(t, x)
8: t← t + a
9: j ← j + a

10: end for
11: end for

(a) Original code.
Variable: array A allocated by vm alloc(M )
1: for i ∈ {0 · · ·N} do
2: page← (A + i× a + b)/PAGESIZE
3: check handle(page)
4: write handle(A + i× a + b, x)
5: end for

(b) Transformed code without optimization. (c) Transformed code with loop transformation.

Figure 5.7: Loop transformation on sequential memory access with constant stride.
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Input: IN word stream
Output: OUT word stream
Variable: DATA word stream, TAPE delta stream
1: for i ∈ {1, · · · , N} do
2: δ← IN[i] - IN[i-1]
3: if log2 δ ≤ MAXBITS then
4: TAPE[i]← δ
5: else
6: TAPE[i]← MAGIC CODE
7: DATA[i]← IN[i]
8: end if
9: OUT ← pack(TAPE, DATA)

10: end for

Input: IN word stream
Output: OUT word stream
Variable: DATA word stream, TAPE delta stream
1: DATA, TAPE← unpack(IN)
2: for TAPE[i] in range of TAPE do
3: if TAPE[i] = MAGIC CODE then
4: OUT[i]← DATA[i]
5: else
6: δ← TAPE[i]
7: OUT[i]← OUT[i-1] + δ
8: end if
9: end for

Figure 5.8: Delta compression and decompression.

larities between adjacent data elements. Despite its simplicity, the algorithm has high

performance and a good compression ratio for sensor data in which adjacent samples are

often correlated.

To design an appropriate compression algorithm for sensor data, the regularities of

the data must be well understood. For this purpose, we collected numerous types of sen-

sor data, e.g., sound, light, and temperature, from Crossbow MICAz and TelosB sensor

network nodes and analyzed their characteristics. Intuitively, sensor data are likely to

stay similar during a certain period of time, and within a certain geographic range, hence

showing high amounts of temporal and spatial locality. For example, in sensor networks

deployed for seabird habitat monitoring [108] sensor nodes may be placed in petrel nests

in underground burrows. The temperature and humidity sensed from one sensor node usu-

ally changes smoothly during a day, except as a result of storms. In addition, the sensor

data of temperature and humidity from adjacent burrows are likely to be similar; these data

are usually transmitted within a cluster of nodes before they are sent to the base station.

Thus, sensor nodes commonly receive highly-redundant data.

A delta-based compression algorithm exploits regularity in data: the difference be-

tween two adjacent data elements (delta) usually requires fewer bits to store than the origi-

nal data [33]. Our implementation of the delta compression and decompression algorithms
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are presented in Figure 5.8. The algorithms are based on the observation that the majority

of the deltas can be stored within a pre-defined MAXBITS; if the delta cannot be stored

within MAXBITS, i.e., there is a sudden change in sensed data, the raw data are stored and

a MAGIC CODE is recorded to indicate this abnormality. The algorithm also adapts to the

compressibility of pages by means of early termination. When the number of deltas that

exceed MAXBITS is above a certain threshold, causing the “compressed” page to exceed

its original size, the algorithm terminates and reports the compressed page size as zero,

indicating that this page is not compressed.

In order to identify the MAXBITS value that provides the best compression ratio, we

analyzed the sample sound data collected by the Crossbow MICAz sensor node. Since the

analog-to-digital converter (ADC) on the MICAz generates a 10-bit output, the compres-

sion algorithm reads in 2 bytes (16 bits) at a time and computes the delta on a 2 bytes basis.

Figure 5.9 shows that 95% of the deltas can be represented using six bits. Therefore, in our

implementation, MAXBITS is set to six. Please note that this value may vary depending on

the underlying hardware of the sensor node, i.e., the bit width of the ADC.

5.4.7 Page State Preservation

The optimization techniques proposed in Section 5.4.5 improve performance by elim-

inating runtime handle checks and address translations associated with memory refer-

ences to pages that have been brought into the uncompressed region. They depend on

compile-time knowledge and assignment of page status. However, in an event-driven

system where an interrupt can preempt a task, an interrupt handler can potentially cause

the compression of a page that is being used by a task. If the task resumes after the

location of the page changes, an error would occur. This makes the loop transforma-

tion and handle check hoisting optimizations unusable. To resolve this problem, we lock
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Figure 5.9: Histogram of sensor data delta
values.

Figure 5.10: Example of loop transform
on multiple arrays.

pages for which memory references are optimized in the uncompressed region. This is

done by introducing a one-bit flag for each page in the LRU list to indicate whether it

is locked. Procedures lock handle and unlock handle are added to MEMMU

library to lock a page in the uncompressed region and release the lock. When inter-

rupt handlers can access memory objects outside the reserved region, loop transforma-

tion and handle check hoisting need to replace check handle with lock handle

and insert unlock handle after exiting from the optimized inner loop. For exam-

ple, in Figure 5.5(c) and (d), check handle(pnum) in line 3 will be replaced with

lock handle(pnum) and unlock handle(pnum) will be inserted after line 6 and

line 8 respectively. In TinyOS, tasks do not preempt each other, so the page locking strat-

egy is only required when interrupts can cause data to be moved between the memory

regions. In other words, if after applying small object optimization and the ring buffer

technique, interrupt handlers only access memory objects in the reserved region, all the

optimization techniques discussed in Section 5.4.5 will still be effective. The page state
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Figure 5.11: Overview of technique.

preservation strategy can be generalized to multi-threaded system by locking pages cur-

rently used by each thread. However, the concurrent execution of many threads accessing

different pages may degrade the memory expansion ratio by requiring a larger uncom-

pressed region to allow pages used by threads simultaneously to stay uncompressed.

5.4.8 Summary

Figure 5.11 illustrates the procedure for using the MEMMU system to automatically

generate an executable from mid-level or high-level language source code such as ANSI

C. First, the memory requirements of the application are analyzed. If these requirements

are smaller than physical RAM, compression is not necessary and therefore no transfor-

mations are performed. Otherwise the application code is compiled to LLVM byte code
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by the LLVM compiler. After that, memory load and store instructions are replaced

with calls to our handle access functions, i.e., check handle, read handle, and

write handle. Other transformations are performed to enable the optimizations de-

scribed in Section 5.4.5. A call to a memory initialization routine is also inserted at the

beginning of the byte code. The modified byte code is then converted back to high-level

language via the LLVM back-end. Finally, the modified application is compiled with the

extended library containing our handle access functions to generate an executable.

In the memory initialization routine, physical memory is divided into three regions.

The size of each region is computed based on the application memory requirement and the

estimated compression ratio of MEMMU, i.e., the average compression ratio for the many

pages of data that may be in use at any point in time. Since the runtime data compression

ratio cannot be accurately decided at compile time, it is possible for the runtime compres-

sion ratio to be worse than the predicted compression ratio, causing execution to stop when

both memory regions are full. Therefore, it is suggested that users determine the compres-

sion ratio based on sample data of their application and set the MEMMU compression

ratio appropriately. This process could potentially be automated by running the selected

compression algorithm on sample data sets. Knowing the exact memory requirement of

the original program and the data compression ratio at compile time allows MEMMU to

determine the sizes of the compressed and the uncompressed regions to ensure sufficient

usable memory for the modified program with minimal performance overhead. Otherwise

if this information is not available at compile time, an overestimate in required memory

size may result in larger performance overhead and an underestimate in required memory

size may result in runtime out-of-memory failure. In Section 5.5.8, we demonstrated that it

is easy to compute a tight upper bound on the aggregated compression ratio using training

data.
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For any compression algorithm, it is possible to construct an input that will result in

a compression ratio greater than one. Similarly, given any predicted application average

compression ratio, it is possible to construct a sequence of inputs on which compression

will exceed the ratio. The frequency of encountering such a sequence of inputs in the field

depends strongly on the application. For many applications, such an event will be rare. For

example, the compression ratio for individual pages of the vibration data and temperature

data shown in Section 5.5.8 never exceed 78.1% and 44.5%, respectively, during 6 months

of measurement. Section 5.5.8 also shows that when the estimated compression ratio is set

to 1.05× the average page compression ratio, this results in a very low probability of mem-

ory exhaustion for this application: 0.38% or 5.5×10−7% every 30 minutes. Although it

is important that the probability of memory exhaustion be low, we believe that it need not

be zero in many applications. For example, if this probability is orders of magnitude lower

than that of node hardware failure [134], its impact on system reliability will be negligible.

If an application required zero probability of memory exhaustion, but the designers still

want the functionality and ease-of-design benefits MEMMU can bring, it would be possi-

ble to migrate data to secondary storage in the rare event of memory exhaustion, e.g., by

using the technique proposed by Choudhuri and Givargis [25]. Combined with MEMMU,

this would eliminate the risk of memory overuse at the cost of extremely rare performance

penalties when secondary storage must be used.

In our experiments, MEMMU is tested on TelosB motes running TinyOS [40]. TinyOS

and its applications are written in nesC [39]. NesC is an extension to the C programming

language that supports the structure and execution model of TinyOS. Ncc is the NesC com-

piler for TinyOS. TinyOS itself does not support dynamic memory allocation, so there are

only stack and global variables in the nesC program; this simplifies analysis of application

memory requirements.
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LLVM does not have a nesC front-end. As a result, one of three possible flows may be

used. In the first, a mote development environment based on ANSI C, such as MANTIS

OS, may be directly used with LLVM. In the second, the ANSI C computation-intensive

portion of the application is manually extracted from the nesC code, provided to LLVM for

transformation, and reinserted in the nesC code before compilation with ncc. We used this

approach for the experiments presented in Section 5.5. However, we have subsequently

developed a fully-automated flow. First, the nesC program is transformed to C by ncc.

Then the C program is transformed to byte code by llvm-gcc and MEMMU compiler

passes are applied. Finally, the LLVM C-backend transforms the byte code back to a C

program and the C program is compiled to an executable by ncc. This flow is complicated

by the fact that ncc inserts inline assembly, which LLVM C-backend does not yet support.

We have therefore developed a script to temporarily associate inline assembly with dummy

function calls, permitting restoration after LLVM transformation passes.

5.5 Experimental Results

This section presents the results of evaluating MEMMU using five representative wire-

less sensor network applications. These benchmarks were executed on a TelosB wireless

sensor node. The TelosB is an MMU-less, low-power, wireless module with integrated

sensors, radio, antenna, and an 8 MHz Texas Instruments MSP430 microcontroller. The

TelosB has 10 KB RAM and typically runs TinyOS. The benchmarks are tested with three

system settings: running the original applications without MEMMU, with an unoptimized

version of MEMMU, and with an optimized version of MEMMU. Four metrics were eval-

uated: average power consumption, execution time, processing rate, and memory usage.

We measured total memory usage, memory used by MEMMU, and division between mem-

ory regions. Processing rate is defined as application data size divided by execution time.
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Table 5.1: Filtering Benchmark
RAM Buffer MEMMU Comp. Uncomp. Proc. Active Average
usage size usage region region time power power
(B) (B) (B) (B) (B) (s) (mW) (mW)

Orig. 9,935 9,728 0 0 0 1.24 6.77 3.94
Unopt. 7,243 9,728 518 3,840 2,560 2.31 6.97 5.92

Opt. 7,243 9,728 518 3,840 2,560 1.35 6.80 4.27
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Figure 5.12: Power consumption of the sound-filtering benchmark using three settings.

Power measurements were taken using a National Instruments 6034E data acquisition card

attached to the PCI bus of a host workstation running Linux. Power was computed based

on the measured voltage across a 10 Ω resistor in series with the power supply. The av-

erage power of duty cycle-based applications is calculated using the following equation.

Paverage =
Pactive × tactive + Pidle × tidle

tactive + tidle
(5.1)

All of LLVM’s optimizations are turned off to ensure all the overheads and savings are

entirely due to MEMMU. The experimental results show that, with the exception of the

image convolution benchmark, the execution time overheads of all other benchmarks are

below 10%. Below we will describe each benchmark and discuss the corresponding results

in detail.
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5.5.1 Sound Filtering

The first example application is sound filtering. When the hardware timer periodically

fires, the mote starts one-dimensional filtering on collected audio data. The MSP430 mi-

crocontroller automatically puts itself into a low power mode when the task stack is empty

and wakes up when the next timer event arrives. As shown in Figure 5.12, the power

waveform is similar to a square wave. For this benchmark, we assume fixed application

and input data sizes (buffer sizes) and compare the memory usage to determine the amount

of memory saved by using MEMMU.

Table 5.1 shows results for this benchmark when running under three system settings.

The memory reduction achieved by MEMMU is 9, 935 − 7, 243 = 2, 692 bytes, which is

27% of the original memory requirement. The saved memory is available to store other

data, which may be larger than 2,692 bytes as a result of compression. For this benchmark,

small object optimization, loop transformation, and pointer dereferencing were applied.

The processing time and active power consumption overheads of unoptimized MEMMU

are 86.3% and 3.0%, while after optimization, the overheads are reduced to 8.9% and

0.4%, respectively. Figure 5.12 depicts the power consumption under the three system

settings. According to Equation 5.1, there are two causes of increased average power

consumption. First, the mote stays in active mode longer when MEMMU is used. Second,

active power consumption increases slightly as a result of MEMMU’s computations.

Table 5.2 shows the performance overhead from calling MEMMU functions when the

optimized version of MEMMU is used. This breakdown in performance overhead was

determined by sampling the program counter at a period of 100 Hz during application

execution using these data to compute the percentage of execution time spent in each

function. Over half of the overhead comes from compress. 17.32% and 15.44% may

be attributed to swap in and swap out, which contain the instructions to search for
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Table 5.2: Overhead of MEMMU Functions
Function name Compress Decompress Swap in Swap out Check handle
Overhead (%) 67.07 0 17.32 15.44 0.17

Table 5.3: Convolution Benchmark
RAM Input Output MEMMU Comp. Uncomp. Proc. Proc. Active
usage image image usage region region time rate power
(B) (B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 9,739 4,900 4,624 0 0 0 1.50 6,349 6.57
Unopt. 9,739 6,084 5,776 638 6400 2304 4.47 2,653 6.82

Opt. 9,739 6,084 5,776 638 6400 2304 2.88 4,118 6.75

free pages and update the page list. Check handle calls swap in and swap out if

the checked page is compressed and no free page in the uncompressed region is available.

Swap in calls swap out if there is no space in the uncompressed region. Swap out

calls compress to compress a victim page. Note that decompression is very efficient.

Therefore the overhead from decompression is close to 0.

We also use this benchmark to evaluate the changes in performance as the memory

required by the application increases, i.e., as the memory expansion ratio of MEMMU

increases. Figure 5.13 shows the increase in performance (processing rate) as a function

of data size in the filtering benchmark using the optimized version of MEMMU. The total

physical memory usage stays constant. The left-most point shows the base case, in which

the physical memory is sufficient to run the application. In this case, MEMMU is not

used. Each of the other points in the figure corresponds to an optimal memory division that

minimizes the performance overhead while meeting the memory requirement. The results

show that the performance penalty stays almost constant despite increasing application

data size. Therefore, even though a larger compression region is needed as application

data sets grow, the performance overhead of MEMMU is fairly stable.
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Figure 5.14: Energy overhead of
MEMMU as a function
of duty cycle.

5.5.2 Image Convolution

Our second example application is a convolution algorithm in which a large matrix

is convolved with a 3 × 3 coefficient kernel matrix. Note that 2-D convolution is used

for graphical images. In order to permit consistent input to allow fair comparisons for

each test case, the input images were generated by scaling the same image to different

sizes; a gray-scale image of a cloudy sky was used. The input images were transferred

to the mote via USB. Table 5.3 compares the input and output image sizes, RAM usage,

processing rate, execution time, and average power consumption of the benchmark appli-

cation under three settings. The results indicate that using the same amount of physical

RAM, MEMMU allows the application to handle images that require more memory than is

physically available: the unmodified TelosB can only handle an input image smaller than

4.8 KB, while MEMMU allows the mote to process images that are 25% larger (6 KB).

Since the delta compression algorithm is less efficient for 8-bit images, the compression

ratio in this case is 62.4%. We believe a lossy compression algorithm designed for image

data would permit a higher usable memory improvement ratio.

Unfortunately, the increase in image size imposes a cost. Using MEMMU results
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Table 5.4: Light Sampling Benchmark
RAM Buffer MEMMU Comp. Uncomp. Proc. Proc. Active
usage size usage region region time rate power
(B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 9,474 9,040 0 0 0 4.39 2,059 57.44
Unopt. 9,474 13,200 603 5,120 3,328 6.53 2,021 58.61

Opt. 9,474 13,200 603 5,120 3,328 6.47 2,040 58.11

in a 58.2% decrease in processing rate and 3.8% increase in power consumption. After

applying small object optimization and handle check hoisting, the processing rate penalty

was reduced to 35.1% and the power consumption penalty was reduced to 2.1%. Please

note that the image convolution benchmark was the only benchmark for which MEMMU

had a performance overhead higher than 10% after optimization. The performance penalty

reduction is smaller compared to other applications because pointer dereferencing cannot

be used to reduce the penalty caused by address translation.

5.5.3 Data Sampling

The third example application is sensor data sampling. In this application, the mote

senses the light level every 1 ms and stores the data to a buffer. When the buffer is full,

its contents are sent via the wireless transmitter. Small object optimization, handle check

hoisting, and pointer dereferencing were applied to this benchmark. Table 5.4 shows that

with MEMMU, the buffer size is increased by 46.0% without increasing physical memory

usage. The average power consumption overheads are 2.0% and 1.1% for unoptimized

and optimized MEMMU respectively. The processing time and processing rate measure

the time and speed of transmitting the data in the buffer. The processing rate is reduced

by 1.8% with unoptimized MEMMU. Optimizations reduced the performance overhead to

0.9%.
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Table 5.5: Covariance Matrix Computation Benchmark
RAM Buffer MEMMU Comp. Uncomp. Proc. Proc. Active
usage size usage region region time rate power
(B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 9,643 9,430 0 0 0 0.47 19,895 5.22
Unopt. 9,643 13,056 602 5,120 3,584 1.44 9,067 5.40
Opt. 9,643 13,056 602 5,120 3,584 0.72 18,133 5.36

Table 5.6: Correlation Computation Benchmark
RAM Signal MEMMU Comp. Uncomp. Proc. Proc. Active
usage size usage region region time rate power
(B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 6,669 6,460 0 0 0 7.98 810 5.34
Unopt. 6,669 9,728 543 4532 1536 28.3 344 5.36
Opt. 6,669 9,728 543 4532 1536 13.00 748 5.35

5.5.4 Covariance Matrix Computation

The fourth example application is covariance matrix computation. This application

is useful in statistical analysis and data reduction. For example, it is the first stage of

principal component analysis. Each vector contains a number of scalars with different

attributes, e.g., different types of sensor data. Small object optimization, runtime handle

check optimization, and pointer dereferencing were applied to this benchmark. Table 5.5

shows that MEMMU permits more vectors to be processed at a single time: the buffer

size increases by 38.5%. Although the performance penalty of unoptimized MEMMU is

large (the processing rate is decreased by 54.4%), optimizations reduce it greatly. The

processing rate using the optimized version of MEMMU is only 8.9% lower than the

original application. The average power consumption penalties of both unoptimized and

optimized MEMMU are below 4%.
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Table 5.7: Comparison of Optimization Techniques
Run time of benchmarks with different MEMMU optimizations (s)

Benchmark Unopt. Runtime Handle Loop Runtime handle Loop trans.
MEMMU handle check trans. check & & pointer

check hoisting pointer deref. deref.
Filtering 1.84 1.25 1.30 1.18 1.20 1.12
Sampling 5.39 5.38 N.A. N.A. 5.37 N.A.

Correlation 21.11 22.50 N.A. 22.53 15.20 12.94
Covariance 1.12 0.86 0.83 N.A. 0.53 N.A.
Convolution 2.88 2.63 1.97 N.A. N.A. N.A.

Table 5.8: Code Size Overhead Introduced by MEMMU
Code size Filtering Convolution Sampling Covariance Correlation

Original (B) 16020 16725 15282 16400 16919
With MEMMU (B) 20888 21882 18630 21631 22019

Overhead (%) 30.4 30.8 21.9 31.9 30.1

5.5.5 Correlation Calculation

The last example application performs sound propagation delay estimation based on

correlation calculation. This application is used to determine the relative locations of

sensors. Small object optimization, runtime handle check optimization, and pointer deref-

erencing were applied to this benchmark. As shown in Table 5.6, MEMMU increases the

size of the input data by 50.6%. Although the unoptimized version of MEMMU reduces

the processing rate by 57.5%, the optimized MEMMU reduces the processing rate by only

7.6%. The penalties to average power consumption of both unoptimized and optimized

MEMMU are no more than 0.5%.

5.5.6 Overhead of Code Size

Table 5.8 shows the increase in code size for each benchmark. On average, executables

generated with MEMMU transformations are 30% larger than those directly compiled

from the original source code. Nevertheless, the code size increase does not lead to flash
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memory size increase in current architectures because most sensor network nodes provide

sufficient flash memory, e.g., the TelosB has 48 KB of program flash memory and the

MicaZ has 128 KB of program flash memory. Therefore, the overhead of code size can

be neglected unless the amount of code memory becomes a tight constraint. This is not

expected in the near future due to the high density of floating-gate technologies such as

EEPROMs and flash memory, relative to SRAM.

5.5.7 Comparisons on Different Optimization Techniques

To understand the relative benefits of the proposed optimization techniques, we com-

pare the improvement in performance by applying these approaches individually and in

combination to five benchmarks. Table 5.7 shows the execution time of the applications

with unoptimized MEMMU and MEMMU augmented with different optimization tech-

niques. “N.A.” indicates that an optimization technique cannot be applied to the corre-

sponding benchmark. For instance, loop transformation cannot be used for the sensor data

sampling application because the program is an implicit loop that executes the next itera-

tion only when a hardware-triggered event occurs; there is no explicit loop structure in the

code that can be transformed. Note that the runtime handle check optimization increases

the execution time of the unoptimized MEMMU for the correlation computation bench-

mark because this application carries out interleaved access to two arrays. Generally, loop

transformation with pointer dereferencing outperforms other optimization techniques be-

cause this combination can achieve the largest reduction in the number of handle checks

and address translations.

5.5.8 Compression Ratio Estimation and Probability of Memory Exhaustion

As discussed in Section 5.4.8, the division between the compressed and the uncom-

pressed regions is based on an estimated compression ratio. Underestimating the com-
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Figure 5.15: Aggregated compression ratio analysis on vibration data.
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Figure 5.16: Aggregated compression ratio analysis on temperature data.

pression ratio will result in failure due to memory exhaustion. We will now use a sta-

tistical technique to analyze the probability of running out of memory for a real-world

data set. The input data are vibration samples gathered from a wireless sensor network

deployed in a building for infrastructure health monitoring [30]. We divide the data into

256 byte pages and compress them with the delta compression algorithm described in Sec-

tion 5.4.6. The probability density function (PDF) of the page compression ratios is shown

in Figure 5.15(a). The average compression ratio of an individual page is 64.7% and the

standard deviation is 0.058. For a compressed region containing 30 compressed pages,

we derive the average compression ratio by convolving the PDF of the page compression
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ratio by the number of compressed pages. Figure 5.15(b) shows the PDF of the aggregated

compression ratio of pages in the compressed region. It still has an average of 64.7%, but

with a much smaller standard deviation: 0.01. The standard deviation of the aggregated

compression ratio decreases as the number of compressed pages increases due to the Law

of Large Numbers. If we set the target compression ratio to 1.05× the average compres-

sion ratio of individual pages (i.e., 67.9%) the probability of the aggregated compression

ratio exceeding our target compression ratio every time the data in the compressed region

change is 0.38%. This probability drops to 1.74×10−6% if we set the target compression

ratio to 1.1× the average compression ratio of individual pages. If we use the data sam-

pling period, 30 minutes, to approximate the period of updating the compressed region,

Mean Time To Failure (MTTF) can be computed by dividing the sampling period by the

failure probability. The MTTF increases from 131.6 hours to 2.87×107 hours when we

slightly increase target compression ratio from 67.9% to 71.2%. The same analysis is done

with temperature data gathered from the same system. Figure 5.16 shows the results. The

average compression ratio for an individual page is 38.6% and the standard deviation is

0.009. The standard deviation of the average compression ratio is 0.002. The probability of

running out of memory every 30 minutes is 5.5×10−7% when the estimation compression

ratio is 1.05× the average. The MTTF is 9.1×107 hours.

The above analysis is based on the assumption that compression ratios of pages in

the compressed region are independent. Computing the correlation among pages in the

compressed region is challenging and complex due to the interaction among sampling

and computation. However, we can get a fairly conservative estimate of the correlation

by observing that, for most applications, adjacent pages of sampled data have greater

compression correlation than those that are separated by more time. We computed the

correlation of compression ratios of neighboring pages, they are quite low (0.125 and
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0.122) for the vibration and temperature monitoring applications.

5.5.9 Summary

To summarize, MEMMU reduces the physical memory requirements of applications

by 27% or expands usable memory by up to 50%. The performance overhead of unop-

timized MEMMU ranges from 57.5% to 86.3%. For four of the five benchmarks, opti-

mization techniques reduce the performance overhead to below 10%. However, the image

convolution application is an exception. Its performance overhead after optimization is

35.1% because the pointer dereferencing optimization technique cannot be used. There is

a trade-off between memory expansion proportion and performance. Larger usable mem-

ory is obtained by using a larger compressed memory region, but this results in more

compression/decompression and data migration operations, reducing speed.

Please note that we were quite conservative in our evaluation of MEMMU. The origi-

nal goal of MEMMU is to expand memory allowing applications requiring more memory

than physically present to still run. However, if we were to only test such large bench-

marks, the outcome would often be “crash” for a system without MEMMU and “finish

execution” for a system with MEMMU. Such an evaluation scheme would not illustrate

the impact of MEMMU on performance. Therefore, we reduced the data set size of the ap-

plication running without MEMMU and compared the data processing rates of the smaller

applications with those of more demanding applications running with MEMMU.

The energy consumption overhead imposed by MEMMU depends on the duty cycle

and communication activity of the applications. Duty cycle is the fraction of time that

the wireless sensor mote is active. An upper-bound on the energy overhead can be de-

rived from our average active power overhead and run time overhead. This upper-bound

is 12%. Many real-world applications have duty cycles lower than 10% in order to maxi-
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mize the life time of the system [49, 136]. In this case, the energy consumption overhead

of MEMMU decreases as the system spends more time in idle mode. Note that the most

direct alternative to using MEMMU is using a sensor network node with more RAM. This

may be impossible, due to the limited types of nodes available. However, even if it is

possible, increasing memory quantity increases its power consumption. An analysis with

CACTI [135] indicates that for a 180 nm process, doubling the amount of memory from

10 KB to 20 KB increases read and write energy consumption by 50% and 30% respec-

tively. Leakage power is also increased, although leakage will only be a serious problem

if future sensor network node processors are fabricated using finer process technologies

such as 90 nm or 65 nm. The power consumption during wireless data transmission is ap-

proximately 10× as high as when the radio is turned off for TelosB and 3.8× as high for

MicaZ [107]. For applications that require periodic data transmission to a base station, or

constant data exchange among nodes, the energy overhead of MEMMU will be negligible.

Given 8% runtime overhead and 4% computation power overhead, Figure 5.14 shows the

energy overhead of MEMMU as a function of duty cycle assuming 2% of the time is spent

transmitting. For applications with duty cycles lower than 10%, MEMMU has an energy

overhead smaller than 4%.

5.6 Conclusions

We have described MEMMU, an efficient software-based technique to increase usable

memory in MMU-less embedded systems via automated on-line compression and decom-

pression of in-RAM data. A number of compile-time and runtime optimizations are used

to minimize its impact on the performance and power consumption. Different optimization

approaches may impact performance in different ways, depending on application memory

reference patterns. An efficient delta-based compression algorithm was designed for sen-
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sor data compression. MEMMU was evaluated using a number of representative wireless

sensor network applications. Experimental results indicate that the proposed optimization

techniques improve MEMMU’s performance and that MEMMU is capable of increasing

usable memory by 39% on average with less than 10% performance and power consump-

tion penalties for all but one application. We have released MEMMU for free academic

and non-profit use [87].



CHAPTER VI

Automatic Construction of System-Level Models for
Sensor Networks

Rapidly and accurately estimating the impact of design decisions on performance met-

rics is critical to both the manual and automated design of wireless sensor networks. Es-

timating system-level performance metrics such as lifetime, data loss rate, and network

connectivity is particularly challenging because they depend on many factors, including

network design and structure, hardware characteristics, communication protocols, and

node reliability. In this chapter, we describe a new method for automatically building

efficient and accurate predictive models for a wide range of system-level performance

metrics. These models can be used to eliminate or reduce the need for simulation during

design space exploration. We evaluate our method by building a model for the lifetime of

networks containing up to 120 nodes, considering both fault processes and battery energy

depletion. With our adaptive sampling technique, only 0.27% of the potential solutions are

evaluated via simulation, resulting in a 33.3% improvement in model accuracy compared

to a uniform sampling technique. Notably, one such automatically produced model out-

performs the most advanced manually designed analytical model, reducing error by 13%

while maintaining very low model evaluation overhead. We also propose a new, more

general definition of system lifetime that accurately captures application requirements and

115
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decouples the specification of requirements from implementation decisions.

Section 6.2 summarizes related work. Section 6.3 discusses options to obtain node-

level fault models and describes the battery energy dissipation model used in our work.

Section 6.4 describes the proposed technique for generating system-level models for esti-

mating wireless sensor network performance metrics. Section 6.5 presents our automated

technique for building system-level lifetime models. Section 6.5.6 compares our model

with the most advanced existing analytical model. Section 6.7 concludes this chapter.

6.1 Introduction

Any sensor network design process, whether manual or automated, requires that the

designer or synthesis toolchain estimate the quality of prospective designs. Many perfor-

mance metrics exist, and the desirable metric is often application-dependent. The faster

the metric can be estimated for a prospective design, the better, as this permits more of the

solution space to be evaluated in the same amount of time. However, the estimate must

also have sufficient accuracy and fidelity to support appropriate design decisions.

The modeling work in this chapter serves the goal of automated synthesis of sensor net-

works driven by very high-level specifications written by application domain experts. The

goal of the synthesis process is to produce a sensor network implementation that meets the

specifications and optimizes or bounds system-level performance metrics such as lifetime,

price, and sampling resolution. Our work and related automated synthesis research [7,19]

share the need to rapidly and accurately estimate such metrics for prospective designs in

the “inner loop” of the synthesis process. Accurate system-level performance models can

be used to rapidly evaluate a multi-objective optimization function and find Pareto-optimal

designs.

There are currently three approaches to estimating system-level performance metrics,



117

each has a different tradeoff between efficiency and accuracy. Measurement-based ap-

proaches are based on data from real wireless sensor network deployments. While highly

accurate, they are the most costly in terms of hardware and human effort, and are partic-

ularly challenging to use for metrics relevant to long term behavior. Measurement-based

approaches are usually not used until the end of the design process. Simulation-based ap-

proaches are based on simulation of the prospective design. Detailed network simulation

can handle numerous performance metrics but is very slow. Relying solely on simulation

for design space exploration is impractical. Analytical approaches are based on manually

constructed models that quickly compute specific performance metrics for a prospective

design. However, such models are less accurate than measurement or simulation because

simplifying assumptions must be made in their construction, particularly in regards to net-

work and environment behavior. They allow rough estimation of performance metrics

early during the design process, but later stages typically require other modeling tech-

niques.

We have developed a technique for the automated construction of fast and accurate

models for estimating system-level sensor network performance metrics. Our technique

combines the accuracy of simulation-based approaches with the rapid evaluation time of

analytical approaches. The key idea is to automatically derive a model for a system-level

performance metric from measured component behavior and detailed simulation results.

Model construction is done offline and may be time-consuming without cause for concern,

as it is not done repeatedly during the design or synthesis process. Once the model is

constructed, it can be rapidly and repeatedly evaluated.

Automated Model Construction Our technique is based on fitting a statistical model to

the multidimensional observed or simulated quality metric data that characterize a design
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space. The black-box technique we propose can be readily automated and permits rapid

evaluation of the resulting models. Numerous stochastic processes influence metrics such

as system lifetime. Models constructed with the proposed process support prediction of

the values of deterministic variables, and the distributions of stochastic variables. This al-

lows a variety of metrics to be computed. In our system lifetime example, metrics such as

mean time to system failure or time to n-probability of system failure can also be readily

computed. As more simulation data are included, the model improves at the cost of in-

creased model construction time. Our iterative sampling technique allows desired model

accuracy to be achieved with few simulation runs. We have considered a range of alterna-

tive modeling techniques, and have found that Kriging (an interpolation method) is most

appropriate [58].

Our technique also incorporates known component time-dependent characteristics into

the models it builds for system-level metrics. This makes it possible to capture long-term

behaviors that might not be observed in measurement or simulation that spans short time

intervals. One important behavior is component failure. Node failures are common in

deployed wireless sensor networks because sensor nodes are generally constructed using

inexpensive components and often operate in harsh environments. However, node fault

processes are often ignored when considering system-level metrics, such as lifetime. Most

previous work equates node lifetime and battery lifetime. As low-power design and en-

ergy scavenging techniques are more commonly used in sensor node platforms, node-level

reliability will have an increasing impact on lifetimes. In our system lifetime example, our

model considers both node-level fault processes and battery depletion. We conducted ex-

periments in which device faults were measured for a specific sensor network platform.

The node temporal fault distribution we use is consistent with our measurements gathered

during 21 months.
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Problems with conventional definitions of system lifetime We evaluate our model con-

struction technique using the performance metric of system lifetime, which is important

for many wireless sensor networks. System lifetime has generally been defined as the

duration from the start of operation until the sensor network ceases to meet its operating

requirements, but most existing work uses a limited definition of “operating requirements”

to simplify the system lifetime estimation problem. Past work has defined network failure

as (1) first node failure [86,80], (2) first link disconnection, (3) failure of a specific number

or percentage of nodes [111], and (4) disconnection of a specific number or percentage of

nodes. These definitions have unfortunate implications for system design because they are

often poorly related to specific application requirements. For example, the first node fail-

ure criterion is only appropriate for the rare application in which each sensor node plays a

critical role.

More importantly, lifetime metrics based on such criteria conflate specification and

implementation decisions. Consider an application in which one must sample temperature

with a spatial resolution of one sample per square meter. The common metrics would not

appropriately capture the lifetimes of implementations that use redundant nodes for fault

tolerance because the failure of a number or percentage of nodes differs from the inability

to gather data at the required spatial resolution. Coupling specification and implementation

is especially troublesome if the application domain expert, e.g., a geologist or biologist,

is not an expert in embedded system design. Reasoning about the relationship between

network-level and application-level behaviors requires understanding the low-level system

components and how they interact with each other. Domain experts rarely have the time

or inclination to develop this understanding.

We believe that the definition of system lifetime should capture the requirements of

application domain experts while limiting ties to implementation decisions. The defini-
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tion should also be flexible enough to support a class of applications instead of a specific

application. Section 6.5.2 presents and provides support for such a definition of sensor net-

work lifetime, which can be summarized as follows: system lifetime is the duration from

the start of operation until the sensor network ceases to meet the specified application-

dependent but implementation-independent data gathering requirements. More generally,

our automated construction process makes it possible to generate a model based on the

application domain expert’s preferred system lifetime metric.

Using our proposed definition of system lifetime, we applied our automatic model

construction technique to modeling system lifetime for data gathering applications. Our

iterative sampling technique supports construction of a predictive model with 3.6% error

based on simulation of only 0.27% of the design space. With the same amount of simula-

tion time, a uniform sampling technique derives a model with 6.0% error.

Contributions Our work makes the following contributions.

1. We are the first to propose an automatic method to construct fast and accurate models

of multiple system-level metrics in wireless sensor networks. The implementation will be

made publicly available.

2. We evaluate our framework by using it to build a model of system lifetime, and com-

paring this model with the most advanced analytic model in the literature, which it sur-

passes in accuracy. The resulting model itself is therefore a contribution.

3. We propose a new definition for system lifetime that better represents application re-

quirements than current definitions and allows sensor network specification be decoupled

from implementation.

4. We present a measurement-based model for node-level fault processes, and use it for

system-level reliability modeling.
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6.2 Related Work

Model construction from simulation or measurements with statistical methods or ma-

chine learning techniques has been used to model processor design spaces [65, 101, 27].

Previous work has demonstrated that accurate predictive models can be built by sampling

a small percentage of the design space. We are the first to apply simulation-based model

generation methods to sensor network system-level performance metrics. We focus on

defining appropriate system-level performance metrics and developing a framework to au-

tomatically construct models to estimate them.

Researchers have previously proposed definitions and models for system lifetime [86,

111, 92]. Generally, node-level fault processes have been ignored. However, a lifetime

model that considers only battery lifetime is insufficient, because node-level faults can

occur before battery depletion and they also influence system performance [134, 63]. Our

problem is formulated using a system lifetime definition that, as we will later argue, is

more general and better suited for use by application designers. Lee et al. constructed

analytical models for sensor network aging analysis using a network connectivity met-

ric [66]. They consider node fault processes in addition to battery depletion. In contrast,

we use a definition of system lifetime that decouples specification from implementation

and describe a regression technique to automatically construct system-level lifetime mod-

els based on node-level characteristics. We also provide evidence that our automatically

derived model is more accurate than their analytical model when evaluated using their

system lifetime definition.

Node-level lifetime models can be used as a foundation for estimating system-level

lifetime. Most work assumes that node lifetime equals battery lifetime, which is estimated

by computing time spent in each power state [54]. A few researchers directly measured
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device fault processes. The developers of the ZN1 sensor node module [145] accelerated

aging by inducing rapid thermal cycling in order to estimate node lifetime. Our work con-

siders both factors, battery depletion and device faults, in order to provide more accurate

estimates.

6.3 Node-Level Modeling

This section describes methods of building models for device fault processes and bat-

tery energy depletion. They are two key factors that determine the lifetimes of individual

wireless sensor network nodes.

6.3.1 Fault Modeling

Sensor nodes are composed of fault-prone components. The effects of node-level faults

can propagate through multiple network layers to the application level. Node-level fault

models relate functionality to time, node characteristics, and node operating modes; they

may be used as building blocks to estimate system-level lifetime. Models for node-level

fault processes can be obtained in three ways.

1. The node manufacturer may evaluate the reliability of sensor node modules via direct

testing and provide a fault model to users [145]. Models obtained in this way, however,

may not characterize the in-field behavior if the deployment environment differs from the

expected operating environment.

2. Node-level lifetime models may be derived from reports on prior deployments of the

nodes under consideration. The more similarities between the developer’s application,

hardware, and deployment environment and the reference deployment, the more accurate

the resulting model.

3. Finally, it is possible for application developers to experimentally characterize the sen-
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Figure 6.1: Device failure of Eco nodes. Figure 6.2: Fit failure data to Weibull dis-
tribution.

sor nodes being considered. This approach allows a controlled testing environment and

workload.

We conducted experiments to model the lifetime fault distribution of ultra-compact Eco

wireless sensor node [104]. The Eco node architecture consists of the nRF24E1 integrated

radio and microcontroller, the Hitachi Metals H34C triaxial accelerometer, an infrared

sensor, a 4 KB EEPROM, an LED, inductor, power regulator, a chip antenna, and a custom

40 mAh lithium-polymer battery. The nodes were used for various wearable applications

including infant monitoring, gesture-based input devices, and water pipe monitoring. We

wrote programs to test the ADC, radio, and EEPROM node components in the field, and

tracked the status of 250 Eco nodes manufactured during June 2007 for 21 months.

Figure 6.1 shows the accumulated failure rate. Seven global node status evaluations

were conducted during this study. Almost half of the nodes failed after 20 months. The

Weibull extreme value distribution is widely used in reliability models, and is the appro-

priate distribution for modeling the first component fault in a node composed of many

components with arbitrary temporal fault distributions [55]. We tentatively fit a Weibull

distribution to the measured data. Figure 6.2 shows the log plot of time and 1/R(t). R(t)
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is the reliability function. The Weibull distribution implies a linear relationship between

ln(t) and ln(ln(1/R(t))). The resulting Weibull distribution has shape parameter 0.33 and

scale parameter 0.02. Its standard residual error is 0.08 and its R2 is 0.96. The statistical

significance test shows that the result is significant (p-value 0.04%). These results indi-

cate that the measured data are consistent with those that would be produced by a fault

process with a Weibull distribution. We use the resulting model in our characterization of

system-level lifetime.

6.3.2 Battery Energy Dissipation Modeling

Battery models are used to predict the remaining energy of a battery and node failure

time due to battery depletion. We adopt a simple battery model that assumes a constant

deliverable energy capacity that is independent of variation in discharge rate. A battery

is depleted when the total consumed energy equals the rated battery capacity. This model

provides sufficient estimates when the battery’s internal resistance and the device current

are low [75]. Most sensor nodes meet these conditions. The proposed model generation

technique could easily be used with more complex battery models [15].

6.4 Automatic Model Construction

This section describes our framework to automatically generate models for system-

level performance metrics for sensor networks.

6.4.1 Overview

Figure 6.3 gives an overview of the automatic model construction process, which takes

four types of inputs: performance metrics to be modeled (response variables), constraints

on prediction error associated with the performance metrics, design parameters (predictor

variables), and their associated ranges. It outputs a model for each performance metric.



125

Figure 6.3: Overview of the model con-
struction technique.

Figure 6.4: Monte Carlo simulation for
system lifetime distribution
computation.

Our model construction technique starts with a sparse and uniformly distributed sample

set. It then incrementally adds more samples in rough regions (regions where the mag-

nitude of cost differences for adjacent points are large) according to prior simulation re-

sults. The process is iterative and contains two loops. The first loop (the one containing

“add samples” in Figure 6.3) iteratively augments the sample set until differences in re-

sponse variables of already sampled points that are close in the design space are below

a threshold. The other loop (the one containing “decrease bound” in Figure 6.3) adjusts

the bound parameter if currently derived models do not meet accuracy requirements. Each

sample represents a possible value assignment to design parameters. Values of perfor-

mance metrics to the samples are determined with Monte Carlo trials based on detailed

sensor network simulations. Statistical modeling is used to fit the simulation results for
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the sampled points. Cross-validation is used to estimate the prediction error of the derived

models. The procedure terminates when the estimated prediction errors meet the specified

requirements. The steps in this procedure will be explained later in this section.

Our framework models multiple performance metrics simultaneously in order to re-

duce total simulation time. Response surfaces for different metrics may have different

shapes. As a consequence, the minimum sample set required to model different metrics

may differ. The model may be used by designers with different multiobjective cost func-

tions, making it necessary to consider the surface roughness associated with each metric.

However, all the metrics are modeled with the same set of samples. We choose this op-

tion for two reasons. (1) The total number of simulation runs depends on the metric that

requires the largest number of samples. This technique better utilizes the available simula-

tion results and can therefore generate more accurate models than an alternative technique

using subsets of available samples to model different metrics. (2) It has the minimal im-

plementation complexity. The only disadvantage is that model construction time for some

metrics may be longer than necessary. However, since modeling is done offline, this is

acceptable.

A wireless sensor network design can be evaluated with various performance met-

rics. We are interested in developing design tools that are accessible to domain experts

who are generally not embedded system experts. To this end, we focus on system-level

performance metrics that directly reflect application requirements from a domain expert’s

perspective. For example, domain experts may have specific requirements for end-to-end

data delivery latency, but are rarely interested in node-to-node data transmission latency.

System-level performance metrics such as data delivery rate, event miss rate, query re-

sponse time, and unattended lifetime are affected by numerous factors. Some are specified

by domain experts to characterize functionality, requirements, and the operating environ-
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ment. They are fixed for the application and cannot be adjusted by design tools. Examples

are size of deployment field and required sensor readings. Other factors, defined as design

parameters (e.g., communication protocols, network size, and node positions) are imple-

mentation options that can be determined either manually by the designer or automatically

by a design tool. The interdependencies among these factors and their complex impact on

system-level performance metrics make deriving accurate closed-form analytical models

for them a challenging or intractable problem.

Our technique has the following beneficial features.

1. Using a detailed sensor network simulator, allows the use of realistic simulation mod-

els, e.g., radio propagation models that consider RF signal attenuation and reflection, re-

ception models that consider interference, or MAC protocol models that consider colli-

sions and contention. Therefore, the design space can be modeled accurately at simulated

design points.

2. Adaptive sampling and statistical modeling allows production of models that have ac-

curacies comparable to exhaustive simulation. However, only a small part of the design

space must be simulated.

3. Our technique can be used to model any system-level performance metric. Our exam-

ples consider system lifetime and data latency.

4. The constructed models can be reused and shared among numerous application devel-

opers and synthesis tools. The pool of models can be potentially expanded to support new

hardware platforms or deployment environments.

6.4.2 Sampling Technique

The sampling procedure determines which design points to simulate. Using fine-

grained sampling results in a long simulation time, while coarse-grained sampling results
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in inaccurate models. Adaptively increasing the number of samples can reduce simulation

time without sacrificing model accuracy. A straightforward approach is to increase the

uniform sampling resolution until accuracy requirements are met. However, this approach

has significant drawbacks. Increasing the resolution for any parameter requires either in-

validating all prior samples due to the new inter-sample spacing, or requires the resolution

for the parameter to double. If uniform sampling is used, doubling the resolution of any

parameter is very costly; even adding a single new parameter value requires m new sam-

ples, where m is the product of value counts for all other parameters. Finally, uniform

sampling may introduce new samples in smooth regions of the parameter space, which

will have little impact on accuracy.

We propose an algorithm that starts with sparse uniform sampling and incrementally

adding samples to the rough regions. The iteration terminates when the difference in each

response variable between adjacent samples is smaller than a threshold. Each iteration of

the algorithm does the following. (1) For each sample point, the differences (delta) of out-

put values between its K nearest neighbors and itself are computed. K is an empirically

determined variable. (2) If the difference in output value between the sample point and

any of its neighbors is larger than the given bound, a new sample is added between them.

If there exists no point at the exact middle position due to discretization of some design

parameters, the nearest unsimulated point is added. After normalizing each design param-

eter component of the vector to its range, the Euclidean distance between two samples is

used to determine the nearest neighbors.

6.4.3 Modeling Technique

We consider two types of modeling methods: global polynomial regression and Krig-

ing.
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A polynomial model has the form y = β0 +β1t1 + · · ·+βmtm + ε, where variable tj is

either a single predictor variable or a product of multiple predictors; each tj can be raised

to a positive power. ε is a random error with zero mean. The order of a polynomial model

is determined by the maximum of the sum of the powers of the predictor variables in each

term of the model. Least-squared error minimizing linear regression is used to estimate

coefficients βj .

Kriging [58] is an interpolation method that minimizes the error of estimated values

based on the spatial distribution of known values. The Kriging model is defined as y(x) =∑N
j=1 βjBj(x) + z(x), where Bj(x) is basis function over the experimental domain and

z(x) is a random error modeled as a Gaussian process. The general formula is a weighted

sum of the data, y(s0) =
∑N

i=1 λiy(si), where s0 is the prediction location, y(si) is the

measured value at the ith location, λi is an unknown weight for the measured value at the

ith location, and N is the number of measured values.

The above modeling techniques are implemented in R, open-source software for statis-

tical computing. The following functions are used in our technique: lm (linear regression),

Krig (Kriging), and cv.lm (cross-validation).

6.4.4 Test of Model Adequacy

The prediction error of the model is estimated with 10-fold cross-validation. The sam-

ple set is randomly divided into 10 equal-sized groups. Nine are used as training data and

one is used as testing data. We run the 10-fold cross-validation 50 times with different

random seeds and average the results. The prediction error for a particular set of testing

data is computed with the equation E =
√∑

i∈T (yp
i − ys

i )
2/|T |, where E is the estimated

error, T is the testing data set, yp
i is the predicted value for data point i using a model con-

structed with the training data, and ys
i is the simulated value for data point i. When the
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average error of the 50 tests is smaller than the required maximum error, we deem the

model adequate.

6.4.5 Wireless Sensor Network Simulation

We use the SIDnet-SWANS simulator [43]. SWANS [12] is a scalable wireless ad

hoc network simulator built on top of the JiST platform, a Java-based discrete event sim-

ulator [11]. SIDnet-SWANS extends SWANS to provide runtime interactions, integrated

energy consumption modeling and management, and event monitoring facilities. Users

have the flexibility to choose between different radio models, routing protocols, and MAC

protocols. The energy model and packet delivery monitoring functionalities are particu-

larly useful for the lifetime modeling presented in Section 6.5.

Note that our model construction framework can be used with any sensor network

simulator. The accuracies of derived models depend on the accuracy of the simulator

in use. The evaluation of the accuracy of the SIDnet-SWANS simulator is presented in

Section 6.6.

6.5 System Lifetime Modeling

This section describes the use of the proposed technique to generate a model of system

lifetime.

6.5.1 Domain of Applications and Assumptions

Sensor network applications span a wide domain. Different applications may have very

different goals (e.g., data collection vs. object tracking) as well as different performance

metrics (e.g., data delivery rate vs. even miss rate). Building one model for each specific

application is infeasible since there are numerous applications. We therefore propose to

divide the application domain into classes with shared characteristics. In order to select
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a class of application for which to generate a system lifetime model, we start with the

most frequently encountered type of application (Archetype 1 identified in Chapter III):

periodic data gathering in a stationary network. Applications in this class are common

in environmental monitoring, infrastructural health monitoring, agriculture, and other do-

mains. We evaluate our model generation technique for this class of applications. Note

that the proposed technique is general enough for use in other domains. More detailed

assumptions regarding the applications are listed in this section. Relaxing the assumptions

only requires changing the simulated programs. (1) Sensor nodes are homogeneous and

have the same lifetime fault model. (2) Sensor node temporal fault distributions are mod-

eled by independent Weibull processes. (3) Sensor nodes are uniformly distributed in a 2D

field. (4) A node failure disconnects the affected node from the network. (5) Data from the

network are gathered at a sink node located in the center of the field. (6) Data from sensor

nodes are routed to the sink using a dynamic data gathering tree. When a parent node fails,

its children select other nodes in their communication range with the minimum hop count

from the root node as their new parent nodes. (7) We consider two data aggregation cases:

perfect aggregation and no aggregation. In the case of perfect aggregation, a single unit of

data is transmitted up the routing tree regardless of the number of units of data received

from children. In the case of no aggregation, each node transmits a quantity of data equal

the sum of received and sensed data quantities.

6.5.2 System Lifetime Definition

We define system lifetime as the time elapsed since the start of operation until the

spatial density of promptly delivered data drops below a threshold specified by the appli-

cation developer. It allows developers to view the system from a data-oriented perspective

relevant to their application requirements, while ignoring implementation details such as
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Figure 6.5: Histogram of lifetime. Figure 6.6: Quantile-Quantile plot of life-
time.

network structure, communication protocols, and use of redundant nodes. For example, to

monitor a field with a large amount of spatial variation in data, the developer may require

a higher sampling density. The sampling density criterion cannot be represented with or

trivially mapped to other existing criteria. For example, the percentage of functioning

nodes or the percentage of connected nodes alone cannot determine the density of data

acquisition, because they do not indicate network size, network structure, and packet drop

rate.

6.5.3 Predictor and Response Variables

The system lifetime of a sensor network is affected by many factors, including sensor

node reliability, total number of nodes, node positions, node activities, network protocol,

battery capacities, power consumptions of components in different power states, etc. The

two key criteria for selecting design parameters are impact on performance and variance.

Parameters that do not impact system performance or are constant should be omitted.

As a case study, we will build a lifetime model for a specific type of hardware platform

and assume an outdoor deployment environment. Consequently, some parameters can be

assumed to be fixed, e.g., the radio communication model parameters and the parameters
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of the node lifetime distribution. The proposed technique can be used to build system-level

models for various hardware platforms by adjusting the appropriate simulation parameters.

Six design parameters are evaluated during simulation: sampling period, network size,

distance between adjacent nodes, battery capacity, aggregation, and threshold for desired

data delivery density. The predictor variables are independent. They can be separately

controlled without affecting each other. However, their impacts on system lifetime are

interdependent. We focus on a sub-region of the design space that contains most previously

deployed applications. The sub-region further determines the range of each design factor:

network size ranges from 9–121 nodes; sampling density threshold ranges from 27–1000

samples per square kilometer; sampling period ranges from 10 minutes to 1 hour; and

inter-node distance ranges from 100–500 feet.

For a specific network design, the system lifetime is best described using a distribution.

The network may fail at different times depending on the failure times of individual nodes.

Modeling lifetime with a single number, such as mean time to failure, is unnecessarily

restrictive. Using a distribution within the model allows application developers to specify

confidence levels for lifetime lower bounds.

The Monte Carlo simulation results suggest that system lifetime has a Gaussian dis-

tribution. Figures 6.5 and 6.6 show the histogram and the quantile–quantile plot of the

lifetime for a specific network setting. Results of other network settings show a simi-

lar trend and were verified with statistical tests (the average p-value is 0.54 for tests on

lifetimes of 100 network settings). We therefore assume a Gaussian distribution. We fur-

ther tested our hypothesis with normality tests (a type of goodness-of-fit test that indicates

whether it is reasonable to assume that random samples come from a normal distribution).

According to the test results, we can accept null hypothesis that the sample data belong to

a Gaussian distribution. After determining the distribution of system lifetime, two param-
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eters are sufficient to describe it: mean and standard deviation. Our response variables are

the mean and standard deviation of system lifetime.

6.5.4 Monte Carlo Simulation

For each combination of predictors corresponding to a specific network design, we

use Monte Carlo simulation to obtain the system lifetime distribution. This procedure is

shown in Figure 6.4. The state of the system corresponds to a particular network topology.

A state change in network topology occurs upon each node failure. Each state is associated

with a power profile indicating the average power consumption of each node in this state,

a residual energy profile indicating the remaining battery energy for each node, and a data

delivery ratio indicating the percentage of promptly delivered data. The power profile

and data delivery ratio are generated using the SWANS simulator. The remaining battery

lifetime of each node is then computed, allowing the time of the next node failure due to

battery depletion to be estimated. The next battery depletion or node failure event causes

a state change. Every time a node fails, it is removed from the network and a new network

placement is generated for the next simulation run. Each Monte Carlo trial marches the

system through states with decreasing node counts and data delivery ratios. Note that the

run does not terminate at a user-specified data delivery ratio. Instead, sufficient data are

gathered to build a model that can be evaluated for arbitrary data delivery ratios specified

during model evaluation. Trials are repeated (with new, randomized, node fault failure

sequences) until the mean lifetime converges.

For the sake of explanation consider Figure 6.7, which shows the result of Monte Carlo

simulation for a specific network design with 49 nodes. Each line shows the degradation

of data delivery ratio with time for one Monte Carlo trial. Each Monte Carlo trial starts

from the same initial state, in which all nodes are operational and the residual energy of
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Figure 6.7: Results of Monte Carlo trials (one line each).

each node is the battery energy capacity. From this point, different Monte Carlo simulation

trials, each of which is represented by a line in the figure, diverge.

If it were necessary to do prolonged network simulation for each network state, sim-

ulation time would be excessive, rendering the technique impractical. Fortunately, we

observe that with a fixed network topology, the power consumption stabilizes within a few

sampling periods in the simulated system. Therefore, it is not necessary to run the detailed

network simulator until the next node failure. Instead, the network simulator is run long

enough to determine average node power consumptions for the current network state. We

found that power consumptions converge within three sampling periods for the simulated

network. To be conservative, we simulated for five periods.

A python script coordinates the use of the detailed network simulator for multiple

Monte Carlo trials to calculate the system lifetime distribution. Many predictor variable

combinations and Monte Carlo trials are required for model construction. Therefore, we

run the simulations in parallel on a cluster of machines, which is composed of over 3,500

Opteron cores. The total CPU time required for model construction was approximately

8 weeks, although the task was completed in much less time due to parallelization of the
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Figure 6.8: Model error and sample size.

parameter study. The model can be rapidly evaluated on a laptop computer: model use is

not computationally demanding.

6.5.5 Comparison of Modeling Technique Accuracies and Efficiencies

We first compare the performance of polynomial regression and Kriging. Figure 6.8

shows the relationship between the prediction error and the sample count for applications

with and without data aggregation. The x-axis represents the size of the sample set. The y-

axis represents the estimated prediction error. The lines labeled “Adaptive regression” and

“Adaptive Kriging” represent the errors of a 2nd-order polynomial model and a Kriging

model, derived from identical sample sets determined by our adaptive sampling technique.

Each point on the lines corresponds to a model generated at the end of a sampling and

modeling iteration. Note that the prediction error is estimated with cross validation and is

affected by how the data are partitioned. Therefore, the resulting curve is not monotonic.

The errors of the polynomial regression models are always larger than those of the Kriging

models. On average, the polynomial regression models have 42% larger error than the

Kriging models. We conclude that Kriging is more appropriate.

The design space we consider in this case contains 405,790 potential design solutions
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(31 battery capacity levels, 5 network sizes, 11 sampling periods, 17 network densities, 7

thresholds, and 2 aggregation options). Our modeling technique was able to build models

with 3.6% average error (absolute error divided by average lifetime) based on approx-

imately 1,100 simulations, i.e., 0.27% of the design space. This demonstrates that the

proposed model generation technique is very efficient.

6.5.6 Comparison with an Analytical Model

To the best of our knowledge, the most relevant and most recent work is the aging

analysis of wireless sensor networks by Lee et al. [66], which focuses on analyzing the

degradation in network connectivity due to node-level faults and battery depletion. Their

work uses a disc graph model of radio communication and ignores MAC-level behaviors,

e.g., contention and collision. Unfortunately, no existing work analyzes system lifetime

using our proposed definition. For the sake of comparison, we revert to a definition in past

work [66], where lifetime is defined as the time until the percentage of nodes transitively

connected to the sink node drops below a threshold. The our resulting model has an error

of 72 hours (2.1% of average lifetime). In comparison, the average prediction error of the

analytical model proposed by Lee et al. is 525 hours (15% of average lifetime).

6.6 Validation and Verification of Sensor Network Simulator

Simulator validation and verification is important because the accuracy of the simu-

lator directly affect the accuracy of the models it is used to build, thus further affecting

the optimality of design. Unfortunately, the SIDnet-SWANS simulator has not been pre-

viously validated. In this section, we test the validity of the SIDnet-SWANS simulator by

comparing with real-system measurements. We also analyze the impact of uncertainty of

simulation models on the system lifetime model.

Simulation validation is concerned with whether a simulator is representative of the
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real system. Simulation verification is concerned with whether a simulator is correctly

implemented. A simulator is composed of a collection of hierarchical models. Real-

system measurements is time-consuming in practice. We therefore designed our validation

experiments to separately evaluate modules that are most critical to the accuracy of the

system lifetime model. Since our lifetime model is mainly affected by energy consumption

and network performance, the following simulation models are expected to have major

effects on the quality of the system lifetime model: radio signal propagation model, energy

model, and network communication model. We conducted a sequence of experiments to

evaluate the simulator in terms of these metrics. Before our experiments, we have ensured

that all parameters in the simulator are consistent with the numbers in the datasheets of the

hardware we used for measurements.

Although SIDnet-SWANS has not been previously validated, several major assump-

tions or key modules used by it has been tested with other wireless network simulators.

For example, the SNR-based reception model used in SIDnet-SWANS has been validated

by Halkes and Langendoen [48]. The error rates for delivery ratio is lower than 5% when

the SNR-based reception model is used. The IEEE 802.15.4 implementation in SIDnet-

SWANS is ported from ns-2 and has been validated by Ivanov et al. [53]. The packet de-

livery ratio, connectivity graph, and packet latencies of ns-2 have average errors of 0.3%,

10%, and 57%.

6.6.1 Evaluate Radio Propagation Model

We start with the lowest-level simulation model that affects the network performance:

the signal propagation model. The Two-Ray model is used in the simulator to compute

signal attenuation from a transmitter to a receiver. This model considers a direct path

and a ground reflection path from the transmitter to the receiver. When the distance d
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Figure 6.9: Basketball court where we validate the Two-Ray signal propagation model.

between the transmitter and the receiver is smaller than a threshold dc (computed with

Equation 6.1), Equation 6.3 is used to compute received signal strength. Otherwise, when

d is larger than dc, Equation 6.2 is used. Pt and Pr are the power of transmitted and

received signals. Gt and Gr are the antenna gains of the transmitter and receiver respec-

tively. ht and hr are the antenna heights of the transmitter and receiver respectively. L is

the system loss. λ is the wavelength. Prior experiment with Wi-Fi channel has shown that

the two-ray model fits well with the observed data in a rural environment [14].

dc =
4πhthr

λ
(6.1)

Pr(d) =
PtGtGrh

2
t h

2
r

d4L
(6.2)

Pr(d) =
PtGtGrλ

2

(4π)2d2L
(6.3)

To evaluate the signal propagation model, we measure RSSIs of packets transmitted
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Figure 6.10: Comparison of measured and
simulated RSSIs with nodes
sitting on the ground.

Figure 6.11: Comparison of measured and
simulated RSSIs with nodes
raised 0.95 m from ground.

between a pair of TelosB nodes and compare them with simulated results. We gradually

increase the distance between the two nodes from 1 m to 30 m. The transmitter node sends

100 packets with 0.1 s inter-packet interval. The receiver node writes all received radio

packets to its EEPROM. The nodes’ orientations are fixed during the experiment. We

conducted this experiment in a basketball court. Figure 6.9 shows a picture of the testing

environment. Two scenarios of node placement are considered: nodes sitting directly on

the ground (antenna is approximately 1.5 cm above ground) and nodes sitting on poles

raised 0.95 m from the ground. We assume the gain of the receiver and the sender are both

one and the signal strength of the sender is 0 dB.

Figure 6.10 and Figure 6.11 show the measured RSSIs and simulated RSSIs as a func-

tion of distance between transmitter and receiver. The maximum distance in Figure 6.10 is

5 m because when distance exceeds 5 m, packets are mostly dropped. The results indicate

that the simulation results have good fidelity compared with the measurements. When

the nodes are on the ground, the simulated results are about 10 dB smaller than the mea-

sured results. However, when the nodes are 0.95 m above ground, the simulated results

are about 10 dB larger than the measured results. The drop in RSSI at 15 m is due to the

approximately half-wavelength phase shift between the line-of-sight and the reflected sig-
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Figure 6.12: Measured power consumption.

nals. After compensating the constant offset between simulated and measured results by

calibrating these parameters, the error of simulation model reduces to 2.9 dB on average.

6.6.2 Evaluate Energy Model

To evaluate the energy model, we measure the power consumption of a TelosB node

while it periodically broadcasts and compare measured power consumption with simula-

tion results. The setup for the power measurement is the same as described in Section 5.5.

Figure 6.12 shows the measured current for two periods. The average power consumption

is 0.19 mW. The simulated average power consumption is 0.21 mW, differing from the

measurement by 10.5%.

6.6.3 Evaluate Network Communication Model

We set up an one-to-one communication experiment to measure latency of network

stack in absence of contention or collision. We program two TelosB nodes to communi-

cation in a ping-pong fashion: a node sends a packet back when it receives a packet from
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Figure 6.13: Experiment to compute latency of network stack.

another node. Each node time stamps its sent and received packet at application layer in

order to compute the packet latency. Figure 6.13 demonstrates how the network latency

is computed in presence of timer difference between two nodes. The two vertical arrows

represent time axes of node 0 and node 1. Assume the timer of node 1 is ahead of that

of node 0 by t′. In the following discussion, the word “time” refers to the local time of

the node where an event occurs. At time t0, node 0 sends a packet including the sending

time t0. t0 is the local time of node 0 when the send function is called at application layer.

Assume the total latency to transmit a packet is D. Then when node 1 receives node 0’s

packet, its timer reads t0 + t′ + D (propagation time is ignored because it is extremely

small relative to network delay). By subtracting the sending time from the receiving time,

node 1 gets t′ + D. When node 1 sends a packet back to node 0 at time t1 + t′, it subtracts

t′+D from the current time and time stamps the packet with the result, i.e., t1−D. When

node 0 receives the packet from node 1, its timer indicates t1 +D. By subtracting the time

stamp of the packet from the receiving time, i.e., t1 +D− (t1−D), it gets 2D. Therefore,

the value of D can be calculated at node 0. In our experiment, we repeat the transmission

for 1000 times.
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Figure 6.14: Measured and simulated network latency.

TinyOS and SIDnet-SWANS implement different CSMA backoff policies: the simu-

lator implements a truncated binary exponential backoff policy which complies with the

standard IEEE 802.15.4, while TinyOS uses a constant congestion window size. In addi-

tion, the initial and congestion backoff time window in TinyOS are larger than the backoff

period in the IEEE802.15.4 protocol. For fair comparison, we modified the simulation

code to conform with the implementation in TinyOS.

Figure 6.14 compares the measured and simulated packet latency. Note that the mea-

sured latency is the sum of latencies of two packets transmitted back and forth between a

pair of nodes, as explained in Figure 6.13. Theoretically, the latency for one packet should

have an uniform distribution, because the initial backoff is generated randomly in a range

from 0.32 ms to 10.24 ms. Therefore, the total latency for two packets is expected to have a
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distribution with triangle shape, which is consistent with the measured results. Figure 6.14

shows that the distributions of simulated latency and measured latency both have a triangle

shape with similar width. The only obvious difference is the mean: the mean of measured

latency exceeds the mean of simulated latency by 10 ms. We believe this is because the

simulator does not model the execution time in the processor. Fortunately, the results in-

dicate that this error can be easily compensated by adding 5 ms to the simulated latency of

a packet.

After calibrating the simulator based on the one-to-one transmission test, we further

test one-hop networks with increasing number nodes to evaluate the simulation accuracy

in presence of packet contention and collision. We use the same program is as that for the

one-to-one communication experiment. Figure 6.15 shows the measured and simulated

50% percentile of packet latency for different network sizes. The RMSE (root mean square

error) of simulation is 1 ms.
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6.6.4 Sensitivity Analysis

From the simulation validation experiment, we observe that some parameters mod-

eled by the simulation can be calibrated with a constant offset (e.g., packet latency), while

some other parameters cannot be simply compensated with this means (e.g., RSSI). This is

constrained by the detail level of a simulator as well as the inherent uncertainty in real sys-

tems. Considering all factors in the modeling technique is costly and usually unnecessary.

However, it is important to understand the impact of uncertainties in certain factors on the

system-level models. In this section, we take the system lifetime model as an example and

study how it is affected by changed in RSSI.

We analyze how the system lifetime changes with RSSI. This process is called “sensi-

tivity analysis”. The simplest form of sensitivity analysis is to vary one value in the model

by a given amount, and examine the impact that the change has on the model’s result. This

approach is called “one-way sensitivity analysis”. In specific, we vary the RSSI computed

by the SIDnet-SWANS simulator ranging from -2 dB to 26 dB while fixing other design
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parameters, including battery capacity, network size, network density, transmission power.

For each RSSI offset, we run the MC simulation (described in Section 6.5.4) to measure

the average lifetime.

We observe that the effects of RSSI change on average lifetime can be different for

different designs. Figure 6.16 shows the results for three design points. X axis shows

the change in RSSI. Y axis shows the average lifetime. The three lines correspond to

three designs. Design 1 has a battery capacity of 3000 mAh, sampling period of 30 min,

network size of 25, distance as 50 m, threshold of 8000 km2, and transmission power of

0 dB. Design 2 has the same parameters with Design 1 except that its distance is 10 m.

Design 3 differs from the Design 1 only in battery capacity and transmission power; its

battery capacity is 1000 mAh and tranmission power is -5 dB. The results of these three

settings have a similar pattern: the changes in lifetime with RSSI is abrupt. At a certain

point, the lifetime abruptly drops to zero. In the extreme cases, the lifetime can either

stay unchanged when changes in RSSI range from 2 dB to -26 dB (Design 2), or changes

dramatically when RSSI decreases by 2 dB (Design 3).

This observation can be explained with principles of the radio. A signal can be success-

fully received when the SNR is higher than the radio reception threshold. Therefore, the

different between the average RSSI of wireless links in a network determines how sensitive

it is to changes in RSSI: the bigger the difference is, the bigger change in RSSI is required

to bring the SNR across the radio reception threshold. For Design 2 in Figure 6.16, the dis-

tance between adjacent sensor nodes are small (10 m). The network therefore has strong

links with RSSI values at least 26 dB above the radio reception threshold. Meanwhile,

Design 3 uses a smaller transmission power (-5 dB) for a sparser network, so it has inter-

mediate wireless links more prone to degradation in RSSI. The link quality directly affects

the data delivery rate, which determines whether a network is still alive.
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The large sensitivity of certain design to RSSI implies that if our lifetime model is di-

rectly used in design optimization, a design with a few years of expected lifetime may fail

to operate immediately after deployment. We propose three solutions to address this prob-

lem. (1) Replace the signal propagation model in the simulator with a statistical model

(e.g., log-normal shadowing model [113]) that is able to characterize variation of RSSI

in a real system. This approach, however, may require a laborious process to collect a

large number of measurements from deployment environment to compute model parame-

ters, such as the path loss exponent and standard deviation for the log-normal shadowing

model. Use a statistical model also implies longer model construction time. (2) Use guard-

banding in modeling process. For example, if the RSSI can vary up to 5 dB in a real-world

environment, then add a -5 dB offset to the RSSI computed by the simulation model. This

approach, however, may result in suboptimal designs. (3) Consider sensitivity to undeter-

ministic factors during optimization.

6.7 Conclusions

This chapter has described an automated technique for generating system performance

models for wireless sensor networks, and explained its use to build a system lifetime model

for distributed, periodic data gathering applications. We have also proposed a system life-

time definition that captures application-level requirements and decouples specification

and implementation. It considers battery lifetimes and node-level fault processes. The

proposed adaptive sampling technique allows the generation of lifetime models with only

3.6% error, despite simulating only 0.27% of the solutions in the design space. Taking

advantage of more realistic models in sensor network simulators and offline model con-

struction, our modeling technique reduces error by 13% compared with the most advanced

analytical model, while supporting rapid model evaluation. Our modeling technique can
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be applied to other performance metrics. We must comment that the effectiveness of the

proposed technique relies on the ability to accurately estimate relevant quality metrics for

a number of potential designs, either through simulation or measurement. Our simulator

validation results show that most components of the simulator are accurate or can be eas-

ily calibrated except for the signal propagation model. This problem will be addressed in

Chapter VII. In Chapter VII, we will use this modeling technique in automated design of

sensor networks.



CHAPTER VII

Synthesis for Wireless Sensor Networks

In Section 3.3, we have formulated the sensor network design problem as a multi-

objective optimization problem. The goal of synthesis is to find the optimal sensor net-

work design according to high-level design requirements. In this chapter, we propose and

evaluate a synthesis technique for homogeneous environments. The proposed technique

uses the system-level performance models presented in Chapter VI to explore the design

space. We also evaluate a heuristic search for optimal design based on online simulation.

The model-based design optimization is based on the assumption that the environment can

be accurately modeled prior to deployment. We demonstrate this to be true for a certain

type of environments categorized as homogeneous environments. Finally, we discuss chal-

lenges introduced by heterogeneity in the environment and propose possible solutions for

synthesis for this more complex type of environments.

7.1 Introduction

A sensor network designer usually has a handful of system attributes to optimize.

Changing a design parameter (e.g., network size) may have opposite effects on differ-

ent attributes: improving some attributes and degrading some others. One challenge is to

quickly identify the best design among a large number of prospective designs. Manually

149
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solving this problem requires knowledge of various existing sensor network design tech-

niques and the interplay among system components. This is currently done by embedded

system experts based on their experience. Synthesis is an automated process to refine the

application-level problem specification to a more detailed specification of the system by

determining values for various design parameters. It has the advantage of exploring a large

set of prospective solutions to achieve good design quality.

The system-level performance models presented in Chapter VI allow quick evaluation

of a prospective design. In this chapter, we propose to use these models to explore the

design space during synthesis. This approach can be applied to different design problem

instances and guarantee optimality. The feasibility of this approach relies on two factors:

synthesis time and model accuracy. The formal determines whether the optimization pro-

cess can be completed in a practical amount of time. The latter determines whether the

optimal design computed based on the models is close to optimal solution in the real world.

Wireless sensor networks are greatly affected by their deployment environments. While

certain types of environments can be characterized by simple models with a few parame-

ters, more complex environments require more complex models or extra characterization

effort prior to deployment. Therefore, we consider two types of deployment environments:

homogeneous and heterogeneous, and separately discuss synthesis solutions for them.

7.2 Related Work

This section reviews previous work in the field of wireless sensor network optimiza-

tion. Previous work has focused on formulating and solving problems of determining

specific design parameters to optimize a sensor network design. Different problem formu-

lations have been proposed and studied considering different set of costs and constraints.

Researchers have studied sensor placement problem in various forms with goals to opti-
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mize network connectivity, energy consumption, data fidelity, costs, etc. [76, 84, 61]. An

extensive summary on this topic is provided in Younis and Akkaya’s survey [147]. Other

researchers have studied problem of selecting optimal node or network configurations such

as radio transmit power [103], battery allocation [79], network configuration [21], role as-

signment [16], routing protocol [80].

These authors only consider a limited number of design parameters and costs at one

time. In addition, they assume specific optimization objectives and constraints. Therefore,

the algorithms are not applicable for general purpose design problems. In contrast, we start

by identifying a complete set of application-level costs that are of interests to application

experts in order to solve a more general form of the design problem.

Automated design and synthesis for wireless sensor networks have been proposed by

a few researchers since 2002 [8, 7, 19]. Bakshi et al. first proposed a methodology for

automatic synthesis of application-specific sensor networks, based on high-level perfor-

mance modeling, multi-granularity system simulation, and model refinement [8]. They

focused on a synthesis form that takes a task graph as input and generates allocation and

scheduling of tasks among different nodes and node settings, given constraints on latency

and throughput. Bonivento et al. proposed a platform-based design method for control

applications [19]. They proposed three abstraction layers representing application level,

network level, and node level. Their synthesis algorithm maps algorithm and communica-

tion protocol to physical nodes to optimize energy consumption. Other researchers focus

on adaptive design. Munir and Gordon proposed a dynamic optimization technique to tune

sensor node parameters (processor voltage, processor frequency, and sampling frequency)

online to meet application requirements [96]. The online optimization problem is for-

mulated as a Markov Decision Process. The authors assume that an application manager

calculates node-level requirements and reward function parameters based on application
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requirements and profiling statistics. It is not clear how this could be done.

7.3 Homogeneous and Heterogeneous Environments

Deployment environment usually has a significant impact on the behavior of a sensor

network. Locations and materials of objects and external noise (e.g., Wi-Fi traffic) in the

environment largely affect the signal propagation, thus impacting network performance.

There are been a large number of studies that deployed wireless nodes in different envi-

ronments to study characteristics of wireless channels. Their results establish evidence

of environmental dependence. Researchers have measured physical layer and link layer

parameters such as signal strength and packet receive rate in different environments, e.g.,

office building, parking lot, and natural habitat. They found that external noise, packet loss

distribution, extent of “gray area”, and packet delivery spatial correlation vary across dif-

ferent environments [148,20,126]. Failing to take deployment environment into consider-

ation during sensor network design can lead to mal-functioning networks [63]. We classify

deployment environments into two groups: homogeneous environment and heterogeneous

environment. In a homogeneous environment, the path loss and channel conditions are

independent of locations. In a heterogeneous environment, channel conditions vary from

location to location. This difference determines whether an optimization technique that

relies on pre-characterized system-level performance models is feasible.

We belive different methods are required in designing a sensor network for a homo-

geneous and heterogenous environment. Homogeneous environments can be adequately

modeled with a few parameters. Therefore, a model-based design approach is proposed

for this type of environment. In contrast, since general simulation models do not account

for location-dependent environmental traits, such as objects in the environment, we do not

expect a model-based design approach to perform well in complex heterogeneous envi-
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Figure 7.1: RSSI measurements with a pair of nodes with fixed distance at different loca-
tions in a basketball court.

ronments such as indoor environment. In addition, it is intractable to model all possible

environments. For heterogeneous environments, we have to either count on more sophis-

ticated sensor network simulators to accurately model a specific environment or rely on a

two-phase design approach to compensate for model errors. The former can imply a sig-

nificant increase in modeling time, specification complexity, or pre-characterization time.

This chapter focuses on homogeneous environment. We will briefly discuss challenges

and potential solutions for heterogenous environments.

7.4 Model-Based Design Optimization for Homogeneous Environments

Mostly homogeneous environments are not uncommon in the real world. An environ-

ment can be treated as homogenous environment if a significant amount of total variation

in path loss and channel condition can be explained by location independent factors. Open

and mostly flat fields are likely to have this property. A basketball court (at which we

conducted a few experiments described later) is a good example of a homogeneous envi-
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ronment. We evaluate its homogeneity by measuring RSSIs of wireless links with fixed

length at different locations in the field. We divided the 20×25 m basketball court into a

5× 6 grid. We randomly selected seven grid edges at which we placed two TelosB nodes,

one on each end of the edge. The nodes are both on poles raised 0.5 m from ground. We let

one node transmit 100 packets to the other node at each location. To eliminate variations

caused by other factors, the relative orientation between the transmitter and receiver nodes,

as well as the roles of the two nodes, are fixed during the whole experiment. Figure 7.1

shows the measured RSSIs for seven different locations. The error bar shows standard

deviation of a sequence of 100 RSSIs gathered at the same position, i.e., the temporal

variation during 10 s. The deviation of average RSSIs at different positions is less than

1 dB.

7.4.1 Design Optimization With System-Level Performance Models

For homogeneous environments, we propose to build system-level performance mod-

els offline and use an exhaustive search to explore the design space using these models.

The optimization engine enumerates all possible combinations of values of design param-

eters in a discretized design space, evaluates the total cost function of each feasible design,

and selects the optimal solutions, i.e., designs with minimum total cost. Exhaustive search

is feasible in this context because the system-level models can be evaluated quickly. Our

experiment with an Intel Pentium 4 work station with 2.8 GHz CPU shows that it only

takes 4 ms to evaluate one prospective design using the system-level performance mod-

els. Therefore, it takes only 27 m to enumerate all the 405,790 prospective designs in

the whole design space considered. We formulate the sensor network design problem as

a multi-objective optimization problem. For each system-level cost (xi), three parame-

ters are specified by an application expert: hard constraint (hci), soft constraint (sci), and
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weight (wi). Their meanings are stated as follows. If xi > hci, the corresponding solution

is infeasible because violating a hard constraint is unacceptable. If xi ≤ sci, there is no

need to further reduce xi. Otherwise, if xi is between sci and hci, xi should be minimized

with weight wi. The goal is to minimize an integrated cost function:

total cost =
∑

i

(xi − hci)× Inf + max(xi − sci, 0)× wi. (7.1)

For performance metrics for which a larger value implies better solution, the met-

ric variable is negated to be treated as cost, as is its associated soft constraint and hard

constraint. For example, lifetime must be maximized. Therefore, if the specified hard

constraint is 100 hours, the hci variable should be −100 hours in Equation 7.1. Note that

this is handled by the design tool. The application designer still specifies positive values

for performance metrics according to the original definition.

An alternative optimization technique is to use heuristic search with online simulations.

A simulation-driven heuristic search runs simulations online to compute the integrated

cost of a potential design. It decides which solution to explore next based on already

explored solutions and knowledge learned about the design space. Instead of modeling

the whole design space offline with our model-based optimization, the simulation-driven

search usually learns a subset of the design space as it runs. It terminates when it thinks the

optimal solution has been found, though this is not necessarily true. Before summarizing

the pros and cons of these two approaches, we first use a set of design problems to evaluate

a heuristic search algorithm.

The heuristic search considered is a greedy search algorithm. The greedy search algo-

rithm starts with a random initial solution. It then evaluates its neighboring solutions and

picks the one with the minimum total cost to move to in next step. If at any step a local

minimum is reached, i.e., no neighboring solution is better than the current solution, the
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algorithm terminates and returns the current solution. Otherwise, it continues evaluating

its neighboring solutions and moves to the one with minimal total cost. Greedy search

algorithms are likely to be trapped in local minima. A common approach to escape from

local minimum is to run search multiple times with different initial starting points. A

simulation-driven greedy search runs simulations to evaluate its neighboring solutions. To

reduce experiment time, we use the performance models built in Chapter VI to generate

results for explored solutions for the greedy search. We run the greedy algorithm 100 times

with different random seeds. For each run, we count the number of steps and necessary

number of simulations to reach a local minimum, as well as percentage of near-optimal

solutions among all local minima reached. A near-optimal solution is one with total cost

exceeding cost of global optimal solution by no more than 5%.

Table 7.1 shows the results. The second and third columns show the average number of

steps and simulations across 100 runs before reaching a local minimum for each problem

instance. The fourth column shows the percentage of near-optimal solutions among the

local minima. Averaged across all the problem instances, the greedy search algorithm

takes 22.9 steps and 70 simulations to reach a local minimum. Among all local minima,

61% of them are near-optimal. In other words, the greedy algorithm has 61% probability to

reach a near-optimal solution in one run. It therefore needs multiple runs to ensure finding

a good solution with a high probability. The probability of encountering one near-optimal

solution with N runs of greedy search is 1 − (1 − 0.61)N . When N is greater than 5, this

probability is larger than 0.99. Therefore, the total simulation runs required to find a near-

optimal solution with 0.99 confidence is 5 × 70 = 350. Given that one simulation takes

about 73 min (consider the MC simulations required to model statistical variables). The

corresponding simulation time is 450 h. Even running in parallel, the greedy search still

requires 85 h (70 simulations), bounded by the time of the sequential search. We therefore
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conclude that a simulation-based greedy search is infeasible for practical use.

The simulation overhead for the greedy algorithm gives a rough upper bound on a

simulation-driven search algorithm. More sophisticated heuristic search algorithms, e.g.,

gradient search and Simulated Annealing, may be developed to reduce the required number

of simulation runs. However, even if a more intelligent search can reduce the simulation

to one tenth that required by greedy search, it still requires hours of simulation time to find

a near-optimal solution. Note that aforementioned experiment is based on a limited design

space. When a larger design space is considered, e.g., by considering different hardware

platforms, the simulation time required for online search is expected to increase faster than

modeling time.

Synthesis time is only one factor that makes a model-based search more favorable. The

benefit of using pre-characterized system-level models for design optimization is multi-

fold. (1) The synthesis time is short and predictable. A reasonable bound on the synthesis

time can be computed by multiplying time for evaluating one total cost function with num-

ber of potential designs. (2) Global optimality is guaranteed. (3) Models can be repeatedly

used for different problem instances. With a simulation-driven search algorithm, every

time the user changes the problem formulation, the design space need to be re-learned,

since such a technique is usually concerned with the total cost instead of individual cost

metrics.

There are a few situations for which online simulations would be more efficient or

necessary. (1) When the feasible design space is tightly constrained. For example, a de-

signer may have multiple tight hard constraints that eliminate a large number of potential

solutions without running simulation (such as problem instance 5 and 6 in Table 7.1. (2)

When the designer has a specific application that cannot be modeled with general-purpose

system-level performance models. For example, when the designer has a pre-defined sen-
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Table 7.1: Evaluation of a greedy search
Problem Steps to Simulations to Percentage of
instance local min local min near-optimal solutions

1 11 37 0.69
2 25 147 0.82
3 28 141 0.87
4 21 55 0.33
5 28 1 0.54
6 26 1 0.48
7 21 137 0.54

Average 22.9 74 0.61

sor placement that cannot be approximated with an uniform placement assumed in our

model construction technique.

7.5 Discussion on Heterogeneous Environments

Model-based design optimization is not feasible for heterogeneous environments be-

cause it is impossible to classify heterogeneous environments into a few types and it is in-

tractable to build models offline for all possible instances of environments. In this section,

we first review past work on designing and analyzing wireless networks in heterogeneous

environments. We then propose a solution for dealing with heterogeneous environments

in the context of automated sensor network design.

There are two general approaches to model wireless networks in complex heteroge-

neous environments. The first relies on a complex simulator and a detailed model of the

environment. The second relies on measurements and machine learning techniques. These

two approaches can also be combined.

Simulators for indoor and urban wireless networks usually consider physical environ-

ment in their signal propagation model to account for effects such as signal reflection,

signal diffraction, multi-path, etc. AT&T’s WISE software for indoor wireless system de-
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ployment uses ray-tracing technique to predict performance of a network placement [34].

It requires building information including locations and compositions of walls, floors, and

other obstructions to radio waves, in order to compute the possible ray paths from a trans-

mitter to a receiver. Simulations for urban wireless network require locations of buildings,

wall structures, hills, foliage, etc. [125, 74]. Detailed knowledge of environment helps

improve prediction accuracy, however, the computational cost is generally high. In addi-

tion, it is not always practical to obtain and specify detailed and accurate information of

physical environments.

Measurement based environment characterization has been proposed for evaluating

performance and coverage of wireless networks [115, 24]. Robinson et al. proposed a

technique to identify locations where a given performance metric meets a conformance

threshold in deployed urban mesh networks using a constrained number of measurements.

Their algorithm first divides the region into sectors with terrain-aware models, then uses

measurements to refine the boundary estimate of each sector. Their method relies on the

assumption that the metric monotonically changes in each sector. Chipara et al. proposed

an approach to predict network coverage in indoor environments. They use signal strength

measurements to fit a signal propagation model that captures effects of different types of

walls. They developed an algorithm to automatically classify walls so users do not need

to identify or specify types of walls. A method to plan and minimize measurements is not

described.

7.5.1 Measurement-Based Environment Pre-Characterization

We believe that simulation-based optimization is necessary for heterogeneous envi-

ronments. A model for the environment is still required. Using detailed and complex

simulators for this purpose is impractical because it can lead to intolerable synthesis time.
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Figure 7.2: Floor plan of Motelab deployment environment.
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Figure 7.3: PRR of wireless links in MoteLab on first floor.

In addition, such simulators require detailed information on the environment, which is not

always available to the application designer, or requires huge effort to collect and specify.

An approach requiring minimal human effort and tolerable synthesis time is desired. We

hypothesize that an environment can be accurately pre-characterized with few intelligently

planned measurements. This hypothesis relies on one assumption: there exists strong spa-

tial correlation in path loss and channel condition to allow using a sparse measurement to

predict for locations without measurements.

To test this assumption, we evaluate how important the location information is in mod-
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Table 7.2: Performance of PRR predictors.

Dataset
Network Total MSE of MSE of Variance explained

size variance dist. model loc. model by location
SING-MoteLab 123 0.07 0.06 0.03 0.34

MoteLab 72 0.11 0.08 0.04 0.36

eling link qualities. Specifically, we use a neural network tool (the neural network toolset

in MATLAB) to build models for PRR using measurements from an indoor environment.

The neural network model maps between a data set of numeric inputs and a set of numeric

targets. In our case, inputs are distances between transmitters and receivers or node posi-

tions. Outputs are packet delivery rate for wireless links. We use two-layer feed-forward

network with sigmoid hidden neurons and linear output neurons. The network is trained

with the Levenberg-Marquardt back-propagation algorithm. The input data set is randomly

divided to three groups: training, testings, and validation, containing 80%, 10%, and 10%

of the data respectively. The mean square error of the neural network model is used as a

performance metric.

We apply this modeling technique to wireless link measurements gathered from the

MoteLab testbed. The MoteLab testbed is deployed in a building across three floors. It

is composed of 190 TMote Sky sensor motes. Each mote has a Chipcon CC2420 radio

operating at 2.4GHz and is powered from wall power. Figure 7.2 shows the floorplan

of the first floor. We experimented with two datasets. One is provided by the Stanford

Information Networks Group [2]. In their experiments, nodes take turns to send a burst of

10,000 broadcast packets with an inter-packet interval of 10 ms. We collected the second

data set from the same testbed. In our experiment, nodes take turns to send a burst of

100 packets with an inter-packet interval of 100 ms. Figure 7.3 shows measured PRR with

nodes on the first floor. We can see a clear trend in spatial variation: links on the left part

are much stronger than links on the right part. The spatial correlation is obvious: links
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close to each other are likely to have similar qualities.

The results are presented in Table 7.2. The second column shows the number of nodes

involved in the experiment. At the time of our experiment, the testbed only contained

72 nodes. The third column shows the total variance of PRRs of all wireless links in the

network. For each pair of nodes in the network, there exists a link. For nodes that are

not connected, the link between has a PRR of zero. The fourth column shows the mean

square error of the Neural Network model trained with distance between a pair of nodes

as input. The fifth column shows the mean square error of the Neural Network model

trained with distance between a pair of nodes as well as their locations as inputs. A node’s

location is described with three variables: x coordinate, y coordinate, and floor number.

The last column compares the percentage of variance can be explained with the two models

and shows the extra percentage of variance can be explained with node locations. On

average, 35% of the variance is explained by locations. These results suggests strong

spatial correlation among wireless links, which can be further used to develop a technique

to use limited measurements to predict wireless link qualities in arbitrary locations in a

complex environment.

7.6 Conclusions

We have described an approach for automated design optimization using system-level

performance models. The system-level performance models can be quickly evaluated

(4 ms for one prospective design); therefore it is practical to enumerate the whole design

space during synthesis. This approach guarantees design optimality. We have evaluated

an alternative that uses greedy search algorithm with online sensor network simulation.

We conclude that online simulation is impractical due to long synthesis time (450 h on

average). We found that complex environment imposes challenges on developing accurate
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models prior to the design process. We therefore categorized the deployment environment

to two types and consider different synthesis approaches for them. While the model-based

design optimization is useful for homogeneous environments, extra effort from application

designer is required to model a heterogeneous environment accurately during the design

process. We observed strong spatial correlation in an indoor heterogeneous environment.

This implies that a pre-characterization technique based on a limited number of measure-

ments may be feasible for heterogeneous environments.



CHAPTER VIII

Contributions and Conclusions

In this dissertation, we have proposed an automated design process for a class of sensor

network applications and presented techniques to tackle the key challenges in supporting

this process. With the proposed design process, a sensor network application designer

only needs to provide high-level specifications of application functionality and require-

ments. The low-level implementation is automatically generated by synthesis tool and

compiler. As a result, much of the human effort in the current design of sensor networks is

eliminated. By hiding intricate implementation details from sensor network designers, our

approach not only simplifies a designer’s job and reduces programming errors, but also

achieves better design quality by automatically exploring a large design space.

We initially set out the goal of developing an automated design framework for a class

of sensor network applications. To address the challenges introduced by vast heterogeneity

among sensor network applications, we proposed the concept of archetype-based design

and categorized the application domain into seven archetypes. We attempted to select the

class of applications that are the most commonly encountered, which correspond to peri-

odic sensing and data processing from a stationary sensor network. To show that an au-

tomated design process can be accessible to individuals without embedded system design

experience, we conducted a user study to evaluate designers’ performance in completing

164
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the most difficult task during the design process: specifying the functionality of an ap-

plication. The results of our user study show that people from other domains with little

computer programming experience and no embedded system design experience can effi-

ciently and correctly specify many representative sensor network applications using our

specification language. To show that all remaining implementation can be handled by au-

tomated tools, we have designed, implemented, and evaluated compile-time and runtime

techniques to generate executables from the high-level specifications. We have also de-

signed modeling techniques and optimization techniques to determine the optimal design

given designer’s requirements for various system costs and performance metrics. There-

fore, by developing the high-level specification languages and associated tools to generate

the final implementation, we have realized the proposed automated design framework and

achieved our goal.

Our work is a first step towards building a fully automated design framework for wire-

less sensor networks. We hope that our work will open the design of wireless sensor

networks to application experts, who are not necessarily embedded system design experts.

In the remainder of this chapter, we summarize the contributions of this dissertation and

discuss future directions.

8.1 Contributions

We were the first to categorize sensor network application domain for the purpose of

developing compact, special-purpose languages for sensor networks [130]. We identified

application characteristics that affect the complexity of specification languages and gener-

ated an archetype taxonomy based on 23 existing sensor network applications. (Chapter II)

We developed a high-level language and its associated compiler for the most frequently

encountered archetype [130]. Our user study indicates that archetype-specific languages
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have the potential to substantially improve the success rates and reduce programming times

for novice programmers compared with existing general-purpose and/or node-level sen-

sor network programming languages. Our language, WASP, increased the success rate

by 1.6× and reduced average development time by 44.4% compared to other languages.

(Chapter III)

We were the first to design and conduct a user study to evaluate several popular lan-

guages for sensor networks. Our user study involved 28 novice programmers and five

programming languages. We have identified difficulties for novice programmers and lan-

guage features to improve their efficiency and correctness. (Chapter III)

We developed a system, called FACTS, to simplify fault detection and error estimation

in wireless sensor networks that is designed to be accessible to application experts [129].

We consider language features to enable novice programmers to deal with faults in sen-

sor networks. Our technique uses easily specified domain-specific expert knowledge to

support the on-line detection of some classes of sensor faults and appropriately adjust ex-

pression intervals to make the system-level impact of faults clear to sensor network users.

We implemented FACTS by extending the WASP sensor network language, compiler, and

run-time system. A small-scale hardware testbed and simulations of a 74-node network

using real-world sensor data show that FACTS substantially increases estimation accuracy

and imposes little overhead compared to fault-unaware programs. Our method can be

applied to other sensor network languages. (Chapter IV)

We developed an efficient software-based technique to increase usable memory in

MMU-less embedded systems via automated on-line compression and decompression of

in-RAM data [131, 132]. We designed a number of compile-time and runtime optimiza-

tions to minimize its impact on the performance and power consumption. Different op-

timization approaches may impact performance in different ways, depending on applica-
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tion memory reference patterns. We also designed a delta-based compression algorithm

for sensor data compression. We evaluated our technique using a number of representa-

tive wireless sensor network applications. Experimental results indicate that the proposed

optimization techniques improve the performance and that our technique is capable of in-

creasing usable memory by 39% on average with less than 10% performance and energy

consumption penalties for most applications. (Chapter V)

We developed an automated technique for generating system performance models for

wireless sensor networks. We focus on performance metrics that directly reflect applica-

tion requirements from application experts’ perspective. We developed an adaptive sam-

pling technique to achieve desired model accuracy with few simulations. Our model con-

struction framework supports modeling a wide range of performance metrics. (Chapter VI)

We evaluated our model construction technique by generating a system lifetime model

for distributed, periodic data gathering applications [128]. We also proposed a system

lifetime definition that captures application-level requirements and decouples specifica-

tion and implementation. In addition to battery lifetime, we also considered node-level

fault processes. The proposed adaptive sampling technique allows the generation of life-

time models with only 3.6% error, despite simulating only 0.27% of the solutions in the

design space. This is a 33% improvement in accuracy over a uniform sampling technique.

Taking advantage of more realistic models in sensor network simulators and offline model

construction, our modeling technique reduces error by 13% compared with the most ad-

vanced analytical model, while still supporting rapid model evaluation. (Chapter VI)

We formulated the sensor network design problem as a multi-objective optimization

problem and designed a specification language for designers to specify their design re-

quirements. We found that it is feasible to find the optimal design for homogeneous

environments by exhaustively exploring a huge design space using the system-level per-
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formance models. We have evaluated an alternative that uses greedy search algorithm

with online simulations. We conclude that simulation-based synthesis is impractical due

to long computation time (450 h on average). For more complex environments that can-

not be accurately modeled prior to design time, we investigated a potential solution that

uses measurements to characterize the environment. Our results suggest that the strong

spatial correlation can be used in building prediction models for complex environments.

(Chapter VII)

8.2 Future Work

Future work includes extending this automated design framework to support more

types of applications, deployment environments, and design requirements.

8.2.1 Design Tool Evaluation for a Complete Design Cycle

This dissertation only evaluated the usability of our application programming lan-

guage, which we believe is the part of the design process that an application expert is

most likely to have difficulty with. Although the other required human actions such as

specifying design requirements and deploying sensor nodes in the field seem simple, there

may be undiscovered challenges for application experts. A user study to test how applica-

tion experts engage in this design process during the whole design cycle is needed. The

form of this user study is expected to be very different from the one in Chapter III: testing

novice programmers with well-defined tasks in limited time. Instead, it would be useful

to conduct a user study that is based on long-term interaction with real application experts

during their use of our tools to develop applications in their domains.
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8.2.2 Synthesis for Applications with Relaxed Assumptions

The model-based design optimization makes several assumptions about the applica-

tions, e.g., uniform node placement and homogeneous deployment environment. Offline

modeling for arbitrary node placement and environment is infeasible. One potential solu-

tion is to approximate or partition the more complex design problem into simpler subprob-

lems. Another potential solution is to use the simulation-based optimization described in

Section 7.4.

In this dissertation, we focused on 2-dimensional networks. 3-dimensional placement

is also common in real world and should be supported. The modeling and optimization

techniques may be directly applied to 3D sensor networks given a 3D sensor network

simulator as long as the computation time is tolerable.

It would be useful to embody new techniques in our design framework. This disserta-

tion only considered battery-based power supplies. Energy harvesting is another attractive

approach for supplying energy to low-power sensor nodes. Various types of energy sources

exist: RF, solar, vibration, etc. An intelligent design tool should recommend the most ef-

ficient energy source based on characteristics of deployment environment and application

requirements.

8.2.3 Specification Languages for Other Archetypes

To support more classes of applications, it would be useful to develop specification

languages for other archetypes. The second archetype, for example, differs from the ap-

plication archetype considered in this dissertation by allowing the sampling process to be

triggered by certain events and by requiring the network to be interactive (the network

should react to commands sent from a base station). Language features in logic program-

ming language [17] may be useful.
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APPENDIX A

A.1 Measurements of Wireless Link Quality with MoteLab Testbed

In this appendix, we document an anomaly encountered in our experiments. Specif-

ically, during our experiments to measure link quality with the MoteLab testbed, we ob-

served that certain transmission patterns greatly degrade the measured link qualities. Al-

though we are not able to explain the causes of such counter-intuitive observations, we did

a sequence of experiments to test many hypothesis. We describe the experimental setup

and results in this appendix, in the hope this anomaly can be resolved or explained in the

future. Note that these problems do not affect our claims and results in the dissertation.

Section A.1.1 describes the Motelab testbed where we run the experiments. Sec-

tion A.1.2 presents the simplest experimental setup for which we observe the impact of

transmission pattern on PRR. Section A.1.3 describes experiments with a larger network

of 79 nodes. We also justify for the experiment setup we choose to use for the dissertation

work.

A.1.1 MoteLab Testbed

MoteLab is an indoor sensor network testbed deployed by researchers at Harvard Uni-

versity [1]. The testbed contained 72 TMote Sky sensor nodes deployed across three floors
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event UART_Receive:
broadcast one packet

event Radio_Receive:
send packet to UART

Figure A.1: Program 1

in a building during our experiment. A TMote Sky node consists of a TI MSP430 proces-

sor and a Chipcon CC2420 radio operating at 2.4 GHz. Every node is connected to an

Ethernet gateway and powered from wall power. The testbed is programmable and open

to public. The web interface allows users to upload their application programs and manage

their tasks. A user can reserve the whole testbed up to 30 min and select arbitrary nodes

to run a program. The client program communicates with the sensor nodes in the testbed

through a single controller that forwards messages to any node in the testbed and collects

messages from all nodes sent through the nodes’ serial ports.

A.1.2 Experiment with Three Sensor Nodes

This section describes a set of experiments with three nodes to investigate the effects of

transmission patterns. We name the three nodes A, B, and C. They are all in transmission

range of each other. We measure the packet reception ratio (number of received packets

divided by the number of transmitted packets) of the wireless links with different trans-

mission schedules. We experiment with different inter-packet intervals (IPI) and different

transmission orders.

The programs executed on the sensor nodes are presented in pseudo code in Sec-

tion A.1.2 and Figure A.1.2. The original programs are written in NesC and are compatible

with TinyOS version 2.1. The difference between the two programs is how wireless tran-

mission is triggered and how results are transmitted to a base station. The first program

relies on a client program to trigger each single wireless transmission by sending a mes-
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event UART_Receive:
broadcast one packet

event Radio_Receive:
broadcast one packet after time IPI
count[sender_id] ++

event Timer_fired:
send summarized results (count[]) to UART

Figure A.2: Program 2

sage to the node’s serial port. The second program only requires a start command from the

client program, then a sequence of transmissions are scheduled by the nodes themselves.

In the first program, as shown in Section A.1.2, a node broadcasts one packet via

radio when it receives a message from its serial port. After receiving a message via the

radio, a node sends a message containing information of sender ID, receiver ID, RSSI, and

packet sequence number of the radio message to its serial port. A Python program runs

on the client machine to send messages to nodes’ serial ports to control the transmission

order. The Python script also listens for messages from the nodes that report successfully

received packets.

We developed the second program to minimize the impact of the control system, the

network that connects the client machine and MoteLab server and associated programs

that control dissemination and collection of packets, of the testbed. This program only

needs one serial port message to start a sequence of wireless transmissions in a Ping-Pong

fashion: nodes A and B start broadcasting when they receive a packet from each other. A

delay is inserted before each transmission to control the IPI. This program also reduces

use of serial port to report received packets. Instead of transmitting a message to its serial

port every time it receives a radio message, a node counts the number of received packets

from different senders and sends the summarized results to its serial port at the end.
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Table A.1: Link Measurements with Different Transmission Orders
Transmission PRR of different links

pattern A to C B to C A to B B to A
AAA...BBB... 1 1 1 1
ABABAB... 1 0 1 1
BABABA... 0 1 1 1

AABBAABB... 1 1 1 1
ABBABBABB... 1 1 1 1

Table A.2: Hypothesis and Experiments
Hypothesis Experiment
UART packets are dropped Minimize use of UART transmission with Program 2
Gain control adjusted for Adjust transmission powers of A and B
one transmitter so that RSSI at C are the same
Affects from radio state Restart radio after sending and receiving
Timing issue Randomize IPI; increase IPI from 0.1 s to 10 s
Hardware problem Switch roles of A,B,C; experiment with other nodes

Table A.1 shows the measured PRRs with different transmission orders. The results

indicate that when A and B take turns to broadcast one packet, C only receives packets

from the node that transmits first. Since nodes A and B both received all packets from

each other, we know that the broadcasts are successful. However, in other transmission

orders, C receives all packets from A and B. The results are the same when we vary other

parameters such as IPI. Experiments with other configurations are listed in Table A.2.

Given that they have no effects on the results, we present the results as a function of

transmission order. All the experiment results are repeatable.

The same experiments are repeated with our own testbed with three TelosB nodes.

The executables are exactly the same. Tmote Sky is a drop-in replacement for TelosB.

They use almost the same design. All programs running on TelosB are supposed to run

on Tmote Sky. However, the phenomenon shown in Table A.1 are not observed with the

TelosB nodes. With all the transmission orders, node C always receives all packets from

both A and B.
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Figure A.3: Histograms of PRR with different tranmission order.

A.1.3 Experiment with All Sensor Nodes in MoteLab

Observing that the transmission pattern “ABABAB” results in broken or weak links

that otherwise have good performance with other tranmission patterns, we repeated similar

experiments with all nodes in the MoteLab testbed to see whether this behavior can be

observed in a large network. We ran the program in Section A.1.2 with all the available

nodes (72 nodes) in the testbed. We considered three transmission orders: (1) nodes take

turns to send one packet each for 100 rounds, (2) nodes take turns to send two packets

each for 50 rounds, and (3) nodes take turns to send 100 packets each. The IPI is fixed at

0.1 s for all experiments.

Figure A.3 shows the histograms of PRR for the three experiments. The results show

that when nodes take turns to send one packet, poor and immediate links dominate. No

link has a PRR higher than 90%. In the other two cases, strong links dominate. These

two settings also result in similar distributions of PRR. It suggests that measurement with

these two settings produce correct results.
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Srinivasan et al. have done empirical study of wireless links [126]. They measured

wireless link qualities in other testbeds. Although they did not claim similar observations,

we found that their data show a relevant trend. Their results (Fig. 3. in [126]) demonstrate

that the percentage of strong links increases with smaller IPI. With small IPIs (10 ms),

they let each node send a burst of packets. For large IPIs, the nodes take turns to send

every packet to reduce total experiment time. Note that also changes the transmission

order in the network; we suspect this change may also have an impact on their results.

Although the change in percentage of intermediate links have been explained by Srinivasan

et al. as being caused by temporal correlation, the change in average link quality remains

unexplained.

A.1.4 Implications on Modeling and Synthesis

Based on the observation that the local experiments with TelosB nodes does not repro-

duce the anomaly, we suspect that it is most likely to be a software error or a hardware

artifact with Tmote Sky. We now discuss the implications of these possible causes on the

automated design process.

• If it is caused by a software error either in TinyOS or the application program, it

has no impact on the automated design process. With an automated design pro-

cess, the low-level source code and executable are generated with tools developed

and thoroughly tested by embedded system experts, which prevents such bugs from

occurring in the first place.

• If it is caused by the Tmote Sky hardware, this implies that at least one extra param-

eter associated with the sensor node platform should be incorporated in the sensor

network simulator. In other words, simulation of Tmote Sky and TelosB of the same

application could produce different results on network performance. It may also
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imply that a good network protocol needs to schedule network transmission to deal

with the performance degradation caused by certain trait of sensor network nodes.

This network protocol may decouple the network performance from the hardware

feature related to our observation. In that case, the design process only needs to

incorporate a different and better network protocol.

A.1.5 Conclusions

In this appendix, we have described our experiments to measure wireless link quality

on the MoteLab testbed and the results that indicate the impact of transmission pattern on

measured link quality. Although we are not able to explain the cause of this phenomenon,

our experiments have excluded several hypothesis. Since we did not observe the same

behavior with TelosB nodes, it may be a problem exclusive to the Tmote Sky platform or

the MoteLab testbed. For further investigate on this problem, we would suggest conduct-

ing onsite experiments with the MoteLab testbed with direct access to the nodes or doing

experiment with Tmote Sky nodes.
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